Bhagwan Yadav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4072734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implementing a Functional Precision Medicine Tumor Board for Acute Myeloid Leukemia. Cancer Discovery, 2022, 12, 388-401.	9.4	73
2	Targeting Apoptosis Pathways With BCL2 and MDM2 Inhibitors in Adult B-cell Acute Lymphoblastic Leukemia. HemaSphere, 2022, 6, e701.	2.7	4
3	High miR-30 Expression Associates with Improved Breast Cancer Patient Survival and Treatment Outcome. Cancers, 2021, 13, 2907.	3.7	3
4	KIT pathway upregulation predicts dasatinib efficacy in acute myeloid leukemia. Leukemia, 2020, 34, 2780-2784.	7.2	6
5	Adult-Onset Anti-Citrullinated Peptide Antibody-Negative Destructive Rheumatoid Arthritis Is Characterized by a Disease-Specific CD8+ T Lymphocyte Signature. Frontiers in Immunology, 2020, 11, 578848.	4.8	11
6	Phosphoproteome and drug-response effects mediated by the three protein phosphatase 2A inhibitor proteins CIP2A, SET, and PME-1. Journal of Biological Chemistry, 2020, 295, 4194-4211.	3.4	48
7	Breeze: an integrated quality control and data analysis application for high-throughput drug screening. Bioinformatics, 2020, 36, 3602-3604.	4.1	68
8	Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia. Haematologica, 2020, 105, 708-720.	3.5	99
9	Network pharmacology modeling identifies synergistic Aurora B and ZAK interaction in triple-negative breast cancer. Npj Systems Biology and Applications, 2019, 5, 20.	3.0	32
10	Immunological monitoring of newly diagnosed CML patients treated with bosutinib or imatinib first-line. Oncolmmunology, 2019, 8, e1638210.	4.6	19
11	Dasatinib and navitoclax act synergistically to target NUP98-NSD1+/FLT3-ITD+ acute myeloid leukemia. Leukemia, 2019, 33, 1360-1372.	7.2	40
12	Integrated Analysis of Drug Sensitivity and Selectivity to Predict Synergistic Drug Combinations and Target Coaddictions in Cancer. Methods in Molecular Biology, 2019, 1888, 205-217.	0.9	7
13	Aggressive natural killer-cell leukemiaÂmutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target. Nature Communications, 2018, 9, 1567.	12.8	107
14	Drug-Sensitivity Screening and Genomic Characterization of 45 HPV-Negative Head and Neck Carcinoma Cell Lines for Novel Biomarkers of Drug Efficacy. Molecular Cancer Therapeutics, 2018, 17, 2060-2071.	4.1	33
15	PP2A inhibition is a druggable MEK inhibitor resistance mechanism in KRAS-mutant lung cancer cells. Science Translational Medicine, 2018, 10, .	12.4	116
16	Comprehensive Drug Testing of Patient-derived Conditionally Reprogrammed Cells from Castration-resistant Prostate Cancer. European Urology, 2017, 71, 319-327.	1.9	74
17	Systematic drug sensitivity testing reveals synergistic growth inhibition by dasatinib or mTOR inhibitors with paclitaxel in ovarian granulosa cell tumor cells. Gynecologic Oncology, 2017, 144, 621-630.	1.4	26
18	JAK1/2 and BCL2 inhibitors synergize to counteract bone marrow stromal cell–induced protection of AML. Blood, 2017, 130, 789-802.	1.4	90

Bhagwan Yadav

#	Article	IF	CITATIONS
19	Identification and Clinical Exploration of Individualized Targeted Therapeutic Approaches in Acute Myeloid Leukemia Patients By Integrating Drug Response and Deep Molecular Profiles. Blood, 2017, 130, 854-854.	1.4	1
20	Identification of precision treatment strategies for relapsed/refractory multiple myeloma by functional drug sensitivity testing. Oncotarget, 2017, 8, 56338-56350.	1.8	35
21	Drug sensitivity profiling identifies potential therapies for lymphoproliferative disorders with overactive JAK/STAT3 signaling. Oncotarget, 2017, 8, 97516-97527.	1.8	28
22	Consistency in drug response profiling. Nature, 2016, 540, E5-E6.	27.8	76
23	Identification of selective cytotoxic and synthetic lethal drug responses in triple negative breast cancer cells. Molecular Cancer, 2016, 15, 34.	19.2	57
24	Mutational Landscape of Aggressive Natural Killer Cell Leukemia and Drug Sensitivity Profiling Reveal Therapeutic Options in Natural Killer Cell Malignancies. Blood, 2016, 128, 2921-2921.	1.4	0
25	Identification of Optimized Compound Combinations for the Treatment of NUP98-NSD1+ AML. Blood, 2016, 128, 4711-4711.	1.4	Ο
26	From drug response profiling to target addiction scoring in cancer cell models. DMM Disease Models and Mechanisms, 2015, 8, 1255-1264.	2.4	13
27	Novel drug candidates for blast phase chronic myeloid leukemia from high-throughput drug sensitivity and resistance testing. Blood Cancer Journal, 2015, 5, e309-e309.	6.2	19
28	Systematic Mapping of Kinase Addiction Combinations in Breast Cancer Cells by Integrating Drug Sensitivity and Selectivity Profiles. Chemistry and Biology, 2015, 22, 1144-1155.	6.0	22
29	Searching for Drug Synergy in Complex Dose–Response Landscapes Using an Interaction Potency Model. Computational and Structural Biotechnology Journal, 2015, 13, 504-513.	4.1	485
30	Abstract P6-02-01: Identification of subgroups of triple negative breast cancer cells with selective responses to mTOR, CDK, mitotic and proteasome inhibitors. , 2015, , .		0
31	JAK1/2 and BCL2 Inhibitors Synergize to Counter-Act Bone Marrow Stromal Cell-Induced Protection of AML. Blood, 2015, 126, 867-867.	1.4	0
32	Suppression of BRCA1 sensitizes cells to proteasome inhibitors. Cell Death and Disease, 2014, 5, e1580-e1580.	6.3	21
33	Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Scientific Reports, 2014, 4, 5193.	3.3	243
34	Abstract 5384: Systematic high-throughput drug sensitivity and resistance testing (DSRT) of ovarian cancer cell lines indicates novel therapeutic possibilities with existing and emerging drugs. , 2014, , .		0
35	Identification of Novel Therapeutic Strategies for NUP98-NSD1-Positive AML By Drug Sensitivity Profiling. Blood, 2014, 124, 2160-2160.	1.4	0
36	Stroma-Derived Factors Significantly Impact the Drug Response Profiles of Patient-Derived Primary AML Cells: Implications for Drug Sensitivity Testing. Blood, 2014, 124, 3505-3505.	1.4	0

Bhagwan Yadav

#	Article	IF	CITATIONS
37	Integration of Ex Vivo Drug Testing and in-Depth Molecular Profiling Reveals Oncogenic Signaling Pathways and Novel Therapeutic Strategies for Multiple Myeloma. Blood, 2014, 124, 2046-2046.	1.4	3
38	AML Specific Targeted Drugs Identified By Drug Sensitivity and Resistance Testing: Comparison of Ex Vivo Patient Cells with in Vitro Cell Lines. Blood, 2014, 124, 2163-2163.	1.4	1
39	Individualized Systems Medicine Strategy to Tailor Treatments for Patients with Chemorefractory Acute Myeloid Leukemia. Cancer Discovery, 2013, 3, 1416-1429.	9.4	334
40	Target Inhibition Networks: Predicting Selective Combinations of Druggable Targets to Block Cancer Survival Pathways. PLoS Computational Biology, 2013, 9, e1003226.	3.2	84
41	Anticancer compound ABT-263 accelerates apoptosis in virus-infected cells and imbalances cytokine production and lowers survival rates of infected mice. Cell Death and Disease, 2013, 4, e742-e742.	6.3	41
42	Abstract 5588: Functional drug sensitivity and resistance profiling of AML patient cells defines a disease-specific combination of druggable signal addictions , 2013, , .		0
43	Stromal Cell Supported High-Throughput Drug Testing Of Primary Leukemia Cells For Comprehensive Assessment Of Sensitivity To Novel Therapies. Blood, 2013, 122, 1668-1668.	1.4	Ο
44	Identification Of AML Subtype-Selective Drugs By Functional Ex Vivo Drug Sensitivity and Resistance Testing and Genomic Profiling. Blood, 2013, 122, 482-482.	1.4	0
45	Obatoclax, Saliphenylhalamide, and Cemcitabine Inhibit Influenza A Virus Infection. Journal of Biological Chemistry, 2012, 287, 35324-35332.	3.4	80
46	High-Throughput Ex Vivo Drug Sensitivity and Resistance Testing (DSRT) Integrated with Deep Genomic and Molecular Profiling Reveal New Therapy Options with Targeted Drugs in Subgroups of Relapsed Chemorefractory AML. Blood, 2012, 120, 288-288.	1.4	1