
Hongquan Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4072298/publications.pdf Version: 2024-02-01

Ηονεομαν Χιι

#	Article	IF	CITATIONS
1	Generalized minimum aberration for asymmetrical fractional factorial designs. Annals of Statistics, 2001, 29, 1066.	2.6	144
2	An Algorithm for Constructing Orthogonal and Nearly-Orthogonal Arrays With Mixed Levels and Small Runs. Technometrics, 2002, 44, 356-368.	1.9	106
3	Analysis of supersaturated designs via the Dantzig selector. Journal of Statistical Planning and Inference, 2009, 139, 2362-2372.	0.6	75
4	Recent developments in nonregular fractional factorial designs. Statistics Surveys, 2009, 3, .	11.3	63
5	Construction of optimal multi-level supersaturated designs. Annals of Statistics, 2005, 33, 2811.	2.6	59
6	Optimal Projective Three-Level Designs for Factor Screening and Interaction Detection. Technometrics, 2004, 46, 280-292.	1.9	57
7	Uniform fractional factorial designs. Annals of Statistics, 2012, 40, .	2.6	57
8	Space-Filling Fractional Factorial Designs. Journal of the American Statistical Association, 2014, 109, 1134-1144.	3.1	57
9	Application of fractional factorial designs to study drug combinations. Statistics in Medicine, 2013, 32, 307-318.	1.6	50
10	A catalogue of three-level regular fractional factorial designs. Metrika, 2005, 62, 259-281.	0.8	47
11	Uniform projection designs. Annals of Statistics, 2019, 47, .	2.6	41
12	Space-filling properties of good lattice point sets. Biometrika, 2015, 102, 959-966.	2.4	40
13	An effective construction method for multi-level uniform designs. Journal of Statistical Planning and Inference, 2013, 143, 1583-1589.	0.6	38
14	Algorithmic Construction of Efficient Fractional Factorial Designs With Large Run Sizes. Technometrics, 2009, 51, 262-277.	1.9	36
15	Moment Aberration Projection for Nonregular Fractional Factorial Designs. Technometrics, 2005, 47, 121-131.	1.9	35
16	Optimal maximin \$L_{1}\$-distance Latin hypercube designs based on good lattice point designs. Annals of Statistics, 2018, 46, .	2.6	33
17	Use of Fractional Factorial Designs in Antiviral Drug Studies. Quality and Reliability Engineering International, 2013, 29, 299-304.	2.3	29
18	Discovery of a low order drug-cell response surface for applications in personalized medicine. Physical Biology, 2014, 11, 065003.	1.8	29

Hongquan Xu

#	Article	IF	CITATIONS
19	The need of considering the interactions in the analysis of screening designs. Journal of Chemometrics, 2009, 23, 545-553.	1.3	28
20	Using blocked fractional factorial designs to construct discrete choice experiments for healthcare studies. Statistics in Medicine, 2016, 35, 2543-2560.	1.6	27
21	A complementary design theory for doubling. Annals of Statistics, 2008, 36, .	2.6	25
22	Construction of maximin distance Latin squares and related Latin hypercube designs. Biometrika, 2017, 104, 455-464.	2.4	24
23	A smooth response surface algorithm for constructing a gene regulatory network. Physiological Genomics, 2002, 11, 11-20.	2.3	23
24	Some nonregular designs from the Nordstrom–Robinson code and their statistical properties. Biometrika, 2005, 92, 385-397.	2.4	23
25	Functional regression analysis using anF test for longitudinal data with large numbers of repeated measures. Statistics in Medicine, 2007, 26, 1552-1566.	1.6	22
26	A Component-Position Model, Analysis and Design for Order-of-Addition Experiments. Technometrics, 2021, 63, 212-224.	1.9	22
27	Composite Designs Based on Orthogonal Arrays and Definitive Screening Designs. Journal of the American Statistical Association, 2017, 112, 1675-1683.	3.1	21
28	Minimum aberration blocking schemes for two- and three-level fractional factorial designs. Journal of Statistical Planning and Inference, 2006, 136, 4088-4118.	0.6	20
29	The use of nonregular fractional factorial designs in combination toxicity studies. Food and Chemical Toxicology, 2009, 47, 2183-2188.	3.6	20
30	On Design Orthogonality, Maximin Distance, and Projection Uniformity for Computer Experiments. Journal of the American Statistical Association, 2022, 117, 375-385.	3.1	20
31	Blocked regular fractional factorial designs with minimum aberration. Annals of Statistics, 2006, 34, 2534.	2.6	19
32	Diagnostics for Linear Models With Functional Responses. Technometrics, 2007, 49, 26-33.	1.9	18
33	Minimum aberration blocking schemes for 128-run designs. Journal of Statistical Planning and Inference, 2010, 140, 3213-3229.	0.6	17
34	Application of kriging models for a drug combination experiment on lung cancer. Statistics in Medicine, 2019, 38, 236-246.	1.6	17
35	Orthogonal subsampling for big data linear regression. Annals of Applied Statistics, 2021, 15, .	1.1	17
36	On the connection between maximin distance designs and orthogonal designs. Biometrika, 2018, 105, 471-477.	2.4	14

Hongquan Xu

#	Article	IF	CITATIONS
37	An augmented approach to the desirability function. Journal of Applied Statistics, 2012, 39, 599-613.	1.3	13
38	One-eighth- and one-sixteenth-fraction quaternary code designs with high resolution. Journal of Statistical Planning and Inference, 2012, 142, 1073-1080.	0.6	11
39	Simultaneous Optimization of Drug Combination Doseâ€Ratio Sequence with Innovative Design and Active Learning. Advanced Therapeutics, 2020, 3, 1900135.	3.2	10
40	A minimum aberration-type criterion for selecting space-filling designs. Biometrika, 2022, 109, 489-501.	2.4	9
41	Construction of Maximin Distance Designs via Level Permutation and Expansion. Statistica Sinica, 2018,	0.3	9
42	An application of a Hill-based response surface model for a drug combination experiment on lung cancer. Statistics in Medicine, 2014, 33, 4227-4236.	1.6	8
43	Use of Orthogonal Array Composite Designs to Study Lipid Accumulation in a Cell-Free System. Quality and Reliability Engineering International, 2016, 32, 1965-1974.	2.3	8
44	Construction of Two-Level Nonregular Designs of Strength Three With Large Run Sizes. Technometrics, 2019, 61, 341-353.	1.9	8
45	Harnessing an Artificial Intelligence Platform to Dynamically Individualize Combination Therapy for Treating Colorectal Carcinoma in a Rat Model. Advanced Therapeutics, 2020, 3, 1900127.	3.2	7
46	Balancing Location and Dispersion Effects for Multiple Responses. Quality and Reliability Engineering International, 2013, 29, 607-615.	2.3	6
47	A mapping-based universal Kriging model for order-of-addition experiments in drug combination studies. Computational Statistics and Data Analysis, 2021, 157, 107155.	1.2	6
48	Monocytes engineered with <scp>iSNAP</scp> inhibit human <scp>B″ymphoma</scp> progression. Bioengineering and Translational Medicine, 2022, 7, .	7.1	3
49	A quasi <i>F</i> â€ŧest for functional linear models with functional covariates and its application to longitudinal data. Statistics in Medicine, 2011, 30, 2842-2853.	1.6	2
50	Data-driven desirability function to measure patients' disease progression in a longitudinal study. Journal of Applied Statistics, 2016, 43, 783-795.	1.3	2
51	Minimum aberration designs for discrete choice experiments. Journal of Statistical Theory and Practice, 2017, 11, 339-360.	0.5	2
52	Design of computer experiments for developing seismic surrogate models. Earthquake Spectra, 2022, 38, 384-406.	3.1	2
53	Orthogonal array composite designs for drug combination experiments with applications for tuberculosis. Statistics in Medicine, 2022, , .	1.6	1
54	Utilizing individual clear effects for intelligent factor allocations and design selections. Journal of Quality Technology, 0, , 1-15.	2.5	0