
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4071877/publications.pdf Version: 2024-02-01

ΗΠΡΚΗΥΝΤΙΝ

#	Article	IF	CITATIONS
1	The foundational framework of tumors: Gametogenesis, p53, and cancer. Seminars in Cancer Biology, 2022, 81, 193-205.	9.6	5
2	AMPK signaling and its targeting in cancer progression and treatment. Seminars in Cancer Biology, 2022, 85, 52-68.	9.6	50
3	NEDD4 degrades TUSC2 to promote glioblastoma progression. Cancer Letters, 2022, 531, 124-135.	7.2	6
4	A gene signature consisting of ubiquitin ligases and deubiquitinating enzymes of SKP2 is associated with clinical outcome in breast cancer. Scientific Reports, 2022, 12, 2478.	3.3	2
5	SIRPÎ ³ -expressing cancer stem-like cells promote immune escape of lung cancer via Hippo signaling. Journal of Clinical Investigation, 2022, 132, .	8.2	20
6	UHRF1: a novel metabolic guardian restricting AMPK activity. Cell Research, 2022, 32, 3-4.	12.0	0
7	Inositol serves as a natural inhibitor of mitochondrial fission by directly targeting AMPK. Molecular Cell, 2021, 81, 3803-3819.e7.	9.7	39
8	Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduction and Targeted Therapy, 2021, 6, 422.	17.1	57
9	A chiralityâ€dependent action of vitamin C in suppressing Kirsten rat sarcoma mutant tumor growth by the oxidative combination: Rationale for cancer therapeutics. International Journal of Cancer, 2020, 146, 2822-2828.	5.1	9
10	Ubiquitin Carboxyl-Terminal Hydrolase L1 (UCHL1) Promotes Uterine Serous Cancer Cell Proliferation and Cell Cycle Progression. Cancers, 2020, 12, 118.	3.7	22
11	One-pot construction of functionalized aziridines and maleimides <i>via</i> a novel pseudo-Knoevenagel cascade reaction. Chemical Communications, 2020, 56, 2194-2197.	4.1	8
12	Identification of Plasma Glycosphingolipids as Potential Biomarkers for Prostate Cancer (PCa) Status. Biomolecules, 2020, 10, 1393.	4.0	12
13	Phosphorylation of PDHA by AMPK Drives TCA Cycle to Promote Cancer Metastasis. Molecular Cell, 2020, 80, 263-278.e7.	9.7	120
14	Her2 promotes early dissemination of breast cancer by suppressing the p38 pathway through Skp2-mediated proteasomal degradation of Tpl2. Oncogene, 2020, 39, 7034-7050.	5.9	6
15	Expeditious access of chromone analogues <i>via</i> a Michael addition-driven multicomponent reaction. Organic Chemistry Frontiers, 2020, 7, 987-992.	4.5	12
16	The Skp2 Pathway: A Critical Target for Cancer Therapy. Seminars in Cancer Biology, 2020, 67, 16-33.	9.6	81
17	Identification of primordial germ cell-like cells as liver metastasis initiating cells in mouse tumour models. Cell Discovery, 2020, 6, 15.	6.7	4
18	AMPK maintains TCA cycle through sequential phosphorylation of PDHA to promote tumor metastasis. Cell Stress, 2020, 4, 273-277.	3.2	8

#	Article	IF	CITATIONS
19	Diversity-Oriented Synthesis of Imidazo-Dipyridines with Anticancer Activity via the Groebke–Blackburn–Bienaymé and TBAB-Mediated Cascade Reaction in One Pot. Journal of Organic Chemistry, 2019, 84, 12632-12638.	3.2	22
20	Systematically understanding the immunity leading to CRPC progression. PLoS Computational Biology, 2019, 15, e1007344.	3.2	23
21	SETDB1-mediated methylation of Akt promotes its K63-linked ubiquitination and activation leading to tumorigenesis. Nature Cell Biology, 2019, 21, 214-225.	10.3	133
22	Lactate Is a Natural Suppressor of RLR Signaling by Targeting MAVS. Cell, 2019, 178, 176-189.e15.	28.9	327
23	Functionalized Spiroindolines with Anticancer Activity through a Metalâ€Free Postâ€Ugi Diastereoselective Oneâ€Pot Cascade Reaction. Chemistry - A European Journal, 2018, 24, 6732-6736.	3.3	7
24	Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells. Nature Immunology, 2018, 19, 29-40.	14.5	97
25	The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nature Communications, 2018, 9, 4728.	12.8	125
26	Abnormal gametogenesis induced by p53 deficiency promotes tumor progression and drug resistance. Cell Discovery, 2018, 4, 54.	6.7	11
27	Diversityâ€Oriented Synthesis of Functionalized Imidazopyridine Analogues with Antiâ€Cancer Activity through a Transitionâ€Metal Free, Oneâ€pot Cascade Reaction. Advanced Synthesis and Catalysis, 2018, 360, 3655-3661.	4.3	10
28	Facile construction of fused benzimidazole-isoquinolinones that induce cell-cycle arrest and apoptosis in colorectal cancer cells. Bioorganic and Medicinal Chemistry, 2018, 26, 3899-3908.	3.0	24
29	Characterization of the GNMT-HectH9-PREX2 tripartite relationship in the pathogenesis of hepatocellular carcinoma. International Journal of Cancer, 2017, 140, 2284-2297.	5.1	28
30	H3 ubiquitination by NEDD4 regulates H3 acetylation and tumorigenesis. Nature Communications, 2017, 8, 14799.	12.8	34
31	A hypoxia-responsive TRAF6–ATM–H2AX signalling axis promotes HIF1α activation, tumorigenesis andÂmetastasis. Nature Cell Biology, 2017, 19, 38-51.	10.3	83
32	Phosphorylation by mTORC1 stablizes Skp2 and regulates its oncogenic function in gastric cancer. Molecular Cancer, 2017, 16, 83.	19.2	19
33	SENP1 regulates PTEN stability to dictate prostate cancer development. Oncotarget, 2017, 8, 17651-17664.	1.8	37
34	TRAF6 Restricts p53 Mitochondrial Translocation, Apoptosis, and Tumor Suppression. Molecular Cell, 2016, 64, 803-814.	9.7	63
35	LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nature Cell Biology, 2016, 18, 431-442.	10.3	239
36	JARID1D Is a Suppressor and Prognostic Marker of Prostate Cancer Invasion and Metastasis. Cancer Research, 2016, 76, 831-843.	0.9	99

#	Article	IF	CITATIONS
37	Targeting ubiquitination for cancer therapies. Future Medicinal Chemistry, 2015, 7, 2333-2350.	2.3	85
38	Skp2 is required for Aurora B activation in cell mitosis and spindle checkpoint. Cell Cycle, 2015, 14, 3877-3884.	2.6	14
39	Skp2-Dependent Ubiquitination and Activation of LKB1 Is Essential for Cancer Cell Survival under Energy Stress. Molecular Cell, 2015, 57, 1022-1033.	9.7	97
40	Skp2-Mediated RagA Ubiquitination Elicits a Negative Feedback to Prevent Amino-Acid-Dependent mTORC1 Hyperactivation by Recruiting GATOR1. Molecular Cell, 2015, 58, 989-1000.	9.7	69
41	Novel Inhibitors Induce Large Conformational Changes of GAB1 Pleckstrin Homology Domain and Kill Breast Cancer Cells. PLoS Computational Biology, 2015, 11, e1004021.	3.2	23
42	Skp2–MacroH2A1–CDK8 axis orchestrates G2/M transition and tumorigenesis. Nature Communications, 2015, 6, 6641.	12.8	87
43	Novel Cancer Therapeutics with Allosteric Modulation of the Mitochondrial C-Raf–DAPK Complex by Raf Inhibitor Combination Therapy. Cancer Research, 2015, 75, 3568-3582.	0.9	19
44	Circular RNAs in cancer: novel insights into origins, properties, functions and implications. American Journal of Cancer Research, 2015, 5, 472-80.	1.4	221
45	Akt: a new activation mechanism. Cell Research, 2014, 24, 785-786.	12.0	47
46	Skp2: A dream target in the coming age of cancer therapy. Cell Cycle, 2014, 13, 679-680.	2.6	39
47	Posttranslational regulation of Akt in human cancer. Cell and Bioscience, 2014, 4, 59.	4.8	111
48	MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer. Science Signaling, 2014, 7, ra71.	3.6	90
49	E3-ligase Skp2 regulates β-catenin expression and maintains hematopoietic stem cell homing. Biochemical and Biophysical Research Communications, 2014, 445, 566-571.	2.1	13
50	Skp2 E3 Ligase Integrates ATM Activation and Homologous Recombination Repair by Ubiquitinating NBS1. Molecular Cell, 2012, 46, 351-361.	9.7	115
51	The Skp2-SCF E3 Ligase Regulates Akt Ubiquitination, Glycolysis, Herceptin Sensitivity, and Tumorigenesis. Cell, 2012, 149, 1098-1111.	28.9	332
52	Critical Role of Monoubiquitination of Histone H2AX Protein in Histone H2AX Phosphorylation and DNA Damage Response*. Journal of Biological Chemistry, 2011, 286, 30806-30815.	3.4	69
53	PML and PMLRARα Interact with Fas to Regulate Fas-Mediated Apoptosis In Vivo. Blood, 2011, 118, 2451-2451.	1.4	0
54	Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nature Cell Biology, 2010, 12, 457-467.	10.3	190

#	Article	IF	CITATIONS
55	Regulation of Skp2 Expression and Activity and Its Role in Cancer Progression. Scientific World Journal, The, 2010, 10, 1001-1015.	2.1	98
56	Regulation of Akt signaling activation by ubiquitination. Cell Cycle, 2010, 9, 486-497.	2.6	130
57	Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nature Cell Biology, 2009, 11, 420-432.	10.3	213
58	The E3 Ligase TRAF6 Regulates Akt Ubiquitination and Activation. Science, 2009, 325, 1134-1138.	12.6	527
59	Deregulated TGF-l² signaling in leukemogenesis. Oncogene, 2005, 24, 5693-5700.	5.9	50
60	Cytoplasmic PML function in TGF-Î ² signalling. Nature, 2004, 431, 205-211.	27.8	291
61	Cytoplasmic PML Function in TGF-Î ² Signaling Blood, 2004, 104, 481-481.	1.4	1