
## Ryan C Sullivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4071355/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western U.S<br>Science, 2013, 339, 1572-1578.                                                                                                                                                           | 12.6 | 482       |
| 2  | Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7550-7555.                                                                                      | 7.1  | 439       |
| 3  | Brownness of organics in aerosols from biomass burning linked to their black carbon content.<br>Nature Geoscience, 2014, 7, 647-650.                                                                                                                                                         | 12.9 | 407       |
| 4  | Sea spray aerosol as a unique source of ice nucleating particles. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5797-5803.                                                                                                                     | 7.1  | 323       |
| 5  | Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmospheric Chemistry and Physics, 2015, 15, 393-409.                                                                                                            | 4.9  | 315       |
| 6  | Characterization of Asian Dust during ACE-Asia. Global and Planetary Change, 2006, 52, 23-56.                                                                                                                                                                                                | 3.5  | 190       |
| 7  | Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other<br>fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at<br>Missoula Experiment (FLAME-4). Atmospheric Chemistry and Physics, 2014, 14, 9727-9754. | 4.9  | 188       |
| 8  | Recent Advances in Our Understanding of Atmospheric Chemistry and Climate Made Possible by<br>On-Line Aerosol Analysis Instrumentation. Analytical Chemistry, 2005, 77, 3861-3886.                                                                                                           | 6.5  | 175       |
| 9  | Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmospheric Chemistry and Physics, 2010, 10, 11471-11487.                                                                                                                  | 4.9  | 175       |
| 10 | Investigations of the Diurnal Cycle and Mixing State of Oxalic Acid in Individual Particles in Asian<br>Aerosol Outflow. Environmental Science & Technology, 2007, 41, 8062-8069.                                                                                                            | 10.0 | 167       |
| 11 | Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites.<br>Agricultural and Forest Meteorology, 2021, 301-302, 108350.                                                                                                                                  | 4.8  | 125       |
| 12 | The International Soil Moisture Network: serving Earth system science for over a decade. Hydrology and Earth System Sciences, 2021, 25, 5749-5804.                                                                                                                                           | 4.9  | 116       |
| 13 | Mineral dust is a sink for chlorine in the marine boundary layer. Atmospheric Environment, 2007, 41, 7166-7179.                                                                                                                                                                              | 4.1  | 113       |
| 14 | Influence of Functional Groups on Organic Aerosol Cloud Condensation Nucleus Activity.<br>Environmental Science & Technology, 2014, 48, 10182-10190.                                                                                                                                         | 10.0 | 99        |
| 15 | Mixing of secondary organic aerosols versus relative humidity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12649-12654.                                                                                                                      | 7.1  | 93        |
| 16 | Timescale for hygroscopic conversion of calcite mineral particles through heterogeneous reaction with nitric acid. Physical Chemistry Chemical Physics, 2009, 11, 7826.                                                                                                                      | 2.8  | 82        |
| 17 | FLUXNET-CH <sub>4</sub> : a global, multi-ecosystem dataset and analysis of<br>methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.                                                                                                                 | 9.9  | 79        |
| 18 | Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles. Atmospheric Chemistry and Physics, 2011, 11, 11131-11144.                                                                                                                  | 4.9  | 70        |

RYAN C SULLIVAN

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Surface modification of mineral dust particles by sulphuric acid processing: implications for ice nucleation abilities. Atmospheric Chemistry and Physics, 2011, 11, 7839-7858.                                           | 4.9  | 60        |
| 20 | Emulsified and Liquid–Liquid Phase-Separated States of α-Pinene Secondary Organic Aerosol Determined<br>Using Aerosol Optical Tweezers. Environmental Science & Technology, 2017, 51, 12154-12163.                        | 10.0 | 57        |
| 21 | Aerosol Optical Tweezers Constrain the Morphology Evolution of Liquid-Liquid Phase-Separated<br>Atmospheric Particles. CheM, 2020, 6, 204-220.                                                                            | 11.7 | 53        |
| 22 | The unstable ice nucleation properties of Snomax® bacterial particles. Journal of Geophysical<br>Research D: Atmospheres, 2016, 121, 11,666.                                                                              | 3.3  | 50        |
| 23 | Biomass burning as a potential source for atmospheric ice nuclei: Western wildfires and prescribed burns. Geophysical Research Letters, 2012, 39, .                                                                       | 4.0  | 49        |
| 24 | Cleaning up our water: reducing interferences from nonhomogeneous freezing of "pure―water in<br>droplet freezing assays of ice-nucleating particles. Atmospheric Measurement Techniques, 2018, 11,<br>5315-5334.          | 3.1  | 48        |
| 25 | Impact of Particle Generation Method on the Apparent Hygroscopicity of Insoluble Mineral Particles.<br>Aerosol Science and Technology, 2010, 44, 830-846.                                                                 | 3.1  | 44        |
| 26 | Advanced aerosol optical tweezers chamber design to facilitate phase-separation and equilibration timescale experiments on complex droplets. Aerosol Science and Technology, 2016, 50, 1327-1341.                         | 3.1  | 43        |
| 27 | Production of N <sub>2</sub> O <sub>5</sub> and ClNO <sub>2</sub> through Nocturnal Processing of Biomass-Burning Aerosol. Environmental Science & Technology, 2018, 52, 550-559.                                         | 10.0 | 42        |
| 28 | Spatial Variability of Sources and Mixing State of Atmospheric Particles in a Metropolitan Area.<br>Environmental Science & Technology, 2018, 52, 6807-6815.                                                              | 10.0 | 42        |
| 29 | Heterogeneous ice nucleation properties of natural desert dust particles coated with a surrogate of secondary organic aerosol. Atmospheric Chemistry and Physics, 2019, 19, 5091-5110.                                    | 4.9  | 40        |
| 30 | In Situ pH Measurements of Individual Levitated Microdroplets Using Aerosol Optical Tweezers.<br>Analytical Chemistry, 2020, 92, 1089-1096.                                                                               | 6.5  | 37        |
| 31 | Atmospheric aging enhances the ice nucleation ability of biomass-burning aerosol. Science Advances, 2021, 7, .                                                                                                            | 10.3 | 35        |
| 32 | Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. Agricultural and Forest Meteorology, 2021, 308-309, 108528.                       | 4.8  | 33        |
| 33 | Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers. Atmospheric Measurement Techniques, 2016, 9, 6117-6137. | 3.1  | 31        |
| 34 | Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance<br>understanding of land-atmosphere interactions. Agricultural and Forest Meteorology, 2021, 307,<br>108509.               | 4.8  | 31        |
| 35 | The common occurrence of highly supercooled drizzle and rain near the coastal regions of the western United States. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9819-9833.                                 | 3.3  | 30        |
| 36 | Aerosol Optical Tweezers Elucidate the Chemistry, Acidity, Phase Separations, and Morphology of<br>Atmospheric Microdroplets. Accounts of Chemical Research, 2020, 53, 2498-2509.                                         | 15.6 | 28        |

RYAN C SULLIVAN

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Much stronger tundra methane emissions during autumn freeze than spring thaw. Global Change<br>Biology, 2021, 27, 376-387.                                                                                                                          | 9.5 | 28        |
| 38 | Evaluating the skill of high-resolution WRF-Chem simulations in describing drivers of aerosol direct climate forcing on the regional scale. Atmospheric Chemistry and Physics, 2016, 16, 397-416.                                                   | 4.9 | 27        |
| 39 | Biomass combustion produces ice-active minerals in biomass-burning aerosol and bottom ash.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21928-21937.                                              | 7.1 | 27        |
| 40 | Quantifying spatiotemporal variability of fine particles in an urban environment using combined fixed and mobile measurements. Atmospheric Environment, 2014, 89, 664-671.                                                                          | 4.1 | 26        |
| 41 | Effect of particle surface area on ice active site densities retrieved from droplet freezing spectra.<br>Atmospheric Chemistry and Physics, 2016, 16, 13359-13378.                                                                                  | 4.9 | 23        |
| 42 | Aerosol–Ice Formation Closure: A Southern Great Plains Field Campaign. Bulletin of the American<br>Meteorological Society, 2021, 102, E1952-E1971.                                                                                                  | 3.3 | 20        |
| 43 | The impact of resolution on meteorological, chemical and aerosol properties in regional simulations with WRF-Chem. Atmospheric Chemistry and Physics, 2017, 17, 1511-1528.                                                                          | 4.9 | 19        |
| 44 | Differences in Eddyâ€Correlation and Energyâ€Balance Surface Turbulent Heat Flux Measurements and<br>Their Impacts on the Largeâ€6cale Forcing Fields at the ARM SGP Site. Journal of Geophysical Research D:<br>Atmospheres, 2019, 124, 3301-3318. | 3.3 | 19        |
| 45 | Spatiotemporal coherence of mean and extreme aerosol particle events over eastern North America as observed from satellite. Atmospheric Environment, 2015, 112, 126-135.                                                                            | 4.1 | 18        |
| 46 | Sensitivity of Simulated Aerosol Properties Over Eastern North America to WRFâ€Chem<br>Parameterizations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3365-3383.                                                                     | 3.3 | 18        |
| 47 | Development and characterization of a "store and create―microfluidic device to determine the<br>heterogeneous freezing properties of ice nucleating particles. Aerosol Science and Technology, 2020,<br>54, 79-93.                                  | 3.1 | 18        |
| 48 | Empirical estimates of size-resolved precipitation scavenging coefficients for ultrafine particles.<br>Atmospheric Environment, 2016, 143, 133-138.                                                                                                 | 4.1 | 17        |
| 49 | New particle formation leads to cloud dimming. Npj Climate and Atmospheric Science, 2018, 1, .                                                                                                                                                      | 6.8 | 17        |
| 50 | Quantifying the Roles of Changing Albedo, Emissivity, and Energy Partitioning in the Impact of<br>Irrigation on Atmospheric Heat Content. Journal of Applied Meteorology and Climatology, 2016, 55,<br>1699-1706.                                   | 1.5 | 16        |
| 51 | A new multicomponent heterogeneous ice nucleation model and its application to Snomax bacterial<br>particles and a Snomax–illite mineral particle mixture. Atmospheric Chemistry and Physics, 2017, 17,<br>13545-13557.                             | 4.9 | 15        |
| 52 | Emerging investigator series: determination of biphasic core–shell droplet properties using aerosol optical tweezers. Environmental Sciences: Processes and Impacts, 2018, 20, 1512-1523.                                                           | 3.5 | 15        |
| 53 | Developing and diagnosing climate change indicators of regional aerosol optical properties.<br>Scientific Reports, 2017, 7, 18093.                                                                                                                  | 3.3 | 14        |
| 54 | Recovering Evapotranspiration Trends from Biased CMIP5 Simulations and Sensitivity to Changing<br>Climate over North America. Journal of Hydrometeorology, 2019, 20, 1619-1633.                                                                     | 1.9 | 14        |

RYAN C SULLIVAN

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Role of Feldspar and Pyroxene Minerals in the Ice Nucleating Ability of Three Volcanic Ashes. ACS<br>Earth and Space Chemistry, 2019, 3, 626-636.                                                                                                                      | 2.7 | 14        |
| 56 | N <sub>2</sub> O <sub>5</sub> reactive uptake kinetics and chlorine activation on authentic biomass-burning aerosol. Environmental Sciences: Processes and Impacts, 2019, 21, 1684-1698.                                                                               | 3.5 | 14        |
| 57 | Metallic and Crustal Elements in Biomass-Burning Aerosol and Ash: Prevalence, Significance, and Similarity to Soil Particles. ACS Earth and Space Chemistry, 2021, 5, 136-148.                                                                                         | 2.7 | 14        |
| 58 | Single-particle elemental analysis of vacuum bag dust samples collected from the International Space<br>Station by SEM/EDX and sp-ICP-ToF-MS. Aerosol Science and Technology, 2021, 55, 571-585.                                                                       | 3.1 | 13        |
| 59 | Mass accommodation coefficients of fresh and aged biomass-burning emissions. Aerosol Science and Technology, 2018, 52, 300-309.                                                                                                                                        | 3.1 | 10        |
| 60 | Modeling the contributions of global air temperature, synoptic-scale phenomena and soil moisture to<br>near-surface static energy variability using artificial neural networks. Atmospheric Chemistry and<br>Physics, 2017, 17, 14457-14471.                           | 4.9 | 8         |
| 61 | Morphology of Organic Carbon Coatings on Biomass-Burning Particles and Their Role in Reactive Gas<br>Uptake. ACS Earth and Space Chemistry, 2021, 5, 2184-2195.                                                                                                        | 2.7 | 8         |
| 62 | Using satelliteâ€based measurements to explore spatiotemporal scales and variability of drivers of new particle formation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12217-12235.                                                                     | 3.3 | 5         |
| 63 | Response of the Reaction Probability of N <sub>2</sub> O <sub>5</sub> with Authentic<br>Biomass-Burning Aerosol to High Relative Humidity. ACS Earth and Space Chemistry, 2021, 5, 2587-2598.                                                                          | 2.7 | 5         |
| 64 | Volcanic ash ice nucleation activity is variably reduced by aging in water and sulfuric acid: the effects of leaching, dissolution, and precipitation. Environmental Science Atmospheres, 2022, 2, 85-99.                                                              | 2.4 | 5         |
| 65 | Dynamic and chemical controls on new particle formation occurrence and characteristics from in situ and satellite-based measurements. Atmospheric Environment, 2016, 127, 316-325.                                                                                     | 4.1 | 4         |
| 66 | Improved Spatiotemporal Representativeness and Bias Reduction of Satelliteâ€Based Evapotranspiration<br>Retrievals via Use of In Situ Meteorology and Constrained Canopy Surface Resistance. Journal of<br>Geophysical Research G: Biogeosciences, 2019, 124, 342-352. | 3.0 | 3         |
| 67 | Quantifying errors in the aerosol mixing-state index based on limited particle sample size. Aerosol<br>Science and Technology, 2020, 54, 1527-1541.                                                                                                                    | 3.1 | 2         |
| 68 | Using Ionic Liquids To Study the Migration of Semivolatile Organic Vapors in Smog Chamber<br>Experiments. Journal of Physical Chemistry A, 2019, 123, 3887-3892.                                                                                                       | 2.5 | 0         |