Daniele Noël

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4070507/publications.pdf

Version: 2024-02-01

100 papers 11,262 citations

53 h-index 100 g-index

106 all docs

106
docs citations

106 times ranked 13178 citing authors

#	Article	IF	CITATIONS
1	Hospitalization Risks for Neurological Disorders in Primary Sjögren's Syndrome Patients. Journal of Clinical Medicine, 2022, 11, 1979.	2.4	2
2	Controlled Silylation of Polysaccharides: Attractive Building Blocks for Biocompatible Foams and Cell-Laden Hydrogels. ACS Applied Polymer Materials, 2022, 4, 4087-4097.	4.4	2
3	miR-155 Contributes to the Immunoregulatory Function of Human Mesenchymal Stem Cells. Frontiers in Immunology, 2021, 12, 624024.	4.8	7
4	Mesenchymal Stromal Cell-Derived Extracellular Vesicles Regulate the Mitochondrial Metabolism via Transfer of miRNAs. Frontiers in Immunology, 2021, 12, 623973.	4.8	18
5	A Collagen-Mimetic Organic-Inorganic Hydrogel for Cartilage Engineering. Gels, 2021, 7, 73.	4.5	11
6	Extracellular Vesicles Are More Potent Than Adipose Mesenchymal Stromal Cells to Exert an Anti-Fibrotic Effect in an In Vitro Model of Systemic Sclerosis. International Journal of Molecular Sciences, 2021, 22, 6837.	4.1	9
7	Pyrroline-5-Carboxylate Reductase 1 Directs the Cartilage Protective and Regenerative Potential of Murphy Roths Large Mouse Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 604756.	3.7	6
8	Mesenchymal stromal cells-derived extracellular vesicles alleviate systemic sclerosis via miR-29a-3p. Journal of Autoimmunity, 2021, 121, 102660.	6.5	29
9	Extracellular vesicles from mesenchymal stromal cells: Therapeutic perspectives for targeting senescence in osteoarthritis. Advanced Drug Delivery Reviews, 2021, 175, 113836.	13.7	27
10	Editorial: Key Players in Systemic Sclerosis: The Immune System and Beyond. Frontiers in Immunology, 2021, 12, 770419.	4.8	3
11	Lung Fibrosis Is Improved by Extracellular Vesicles from IFNγ-Primed Mesenchymal Stromal Cells in Murine Systemic Sclerosis. Cells, 2021, 10, 2727.	4.1	12
12	Neuromedin B promotes chondrocyte differentiation of mesenchymal stromal cells via calcineurin and calcium signaling. Cell and Bioscience, 2021, 11, 183.	4.8	5
13	Cancer incidence in primary Sj \tilde{A} ¶gren's syndrome: Data from the French hospitalization database. Autoimmunity Reviews, 2021, 20, 102987.	5.8	16
14	TGFBI secreted by mesenchymal stromal cells ameliorates osteoarthritis and is detected in extracellular vesicles. Biomaterials, 2020, 226, 119544.	11.4	53
15	Time-dependent LPS exposure commands MSC immunoplasticity through TLR4 activation leading to opposite therapeutic outcome in EAE. Stem Cell Research and Therapy, 2020, 11, 416.	5.5	41
16	Mesenchymal Stem Cell-Derived Extracellular Vesicles: Opportunities and Challenges for Clinical Translation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 997.	4.1	94
17	Mesenchymal Stem Cell Derived Extracellular Vesicles in Aging. Frontiers in Cell and Developmental Biology, 2020, 8, 107.	3.7	60
18	Characterization of immortalized human islet stromal cells reveals a MSC-like profile with pancreatic features. Stem Cell Research and Therapy, 2020, 11, 158.	5.5	7

#	Article	IF	CITATIONS
19	Biobased pH-responsive and self-healing hydrogels prepared from O-carboxymethyl chitosan and a 3-dimensional dynamer as cartilage engineering scaffold. Carbohydrate Polymers, 2020, 244, 116471.	10.2	38
20	Inorganic Sol–Gel Polymerization for Hydrogel Bioprinting. ACS Omega, 2020, 5, 2640-2647.	3.5	13
21	Biocompatible Glycineâ€Assisted Catalysis of the Solâ€Gel Process: Development of Cellâ€Embedded Hydrogels. ChemPlusChem, 2019, 84, 1720-1729.	2.8	13
22	TGF^2 i is involved in the chondrogenic differentiation of mesenchymal stem cells and is dysregulated in osteoarthritis. Osteoarthritis and Cartilage, 2019, 27, 493-503.	1.3	23
23	Mesenchymal Stem Cell-Based Therapy of Osteoarthritis. , 2019, , 87-109.		2
24	Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development. Aging, 2019, 11, 9128-9146.	3.1	58
25	Mesenchymal stem cells seeded on a human amniotic membrane improve liver regeneration and mouse survival after extended hepatectomy. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1062-1073.	2.7	19
26	Fibrosis Development in HOCl-Induced Systemic Sclerosis: A Multistage Process Hampered by Mesenchymal Stem Cells. Frontiers in Immunology, 2018, 9, 2571.	4.8	27
27	Mesenchymal Stem Cells in Systemic Sclerosis: Allogenic or Autologous Approaches for Therapeutic Use?. Frontiers in Immunology, 2018, 9, 2938.	4.8	48
28	iNOS Activity Is Required for the Therapeutic Effect of Mesenchymal Stem Cells in Experimental Systemic Sclerosis. Frontiers in Immunology, 2018, 9, 3056.	4.8	16
29	Contribution of microRNAs to the immunosuppressive function of mesenchymal stem cells. Biochimie, 2018, 155, 109-118.	2.6	17
30	Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics, 2018, 8, 1399-1410.	10.0	347
31	Intriguing Relationships Between Cancer and Systemic Sclerosis: Role of the Immune System and Other Contributors. Frontiers in Immunology, 2018, 9, 3112.	4.8	62
32	Secreted \hat{i}_{\pm} -Klotho maintains cartilage tissue homeostasis by repressing NOS2 and ZIP8-MMP13 catabolic axis. Aging, 2018, 10, 1442-1453.	3.1	22
33	Adipose-Derived Mesenchymal Stem Cells in Autoimmune Disorders: State of the Art and Perspectives for Systemic Sclerosis. Clinical Reviews in Allergy and Immunology, 2017, 52, 234-259.	6.5	98
34	Sol–gel synthesis of collagen-inspired peptide hydrogel. Materials Today, 2017, 20, 59-66.	14.2	37
35	Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Scientific Reports, 2017, 7, 16214.	3.3	426
36	Pathogenic or Therapeutic Extracellular Vesicles in Rheumatic Diseases: Role of Mesenchymal Stem Cell-Derived Vesicles. International Journal of Molecular Sciences, 2017, 18, 889.	4.1	76

#	Article	IF	Citations
37	Serum-Mediated Oxidative Stress from Systemic Sclerosis Patients Affects Mesenchymal Stem Cell Function. Frontiers in Immunology, 2017, 8, 988.	4.8	14
38	Thrombospondin-1 Partly Mediates the Cartilage Protective Effect of Adipose-Derived Mesenchymal Stem Cells in Osteoarthritis. Frontiers in Immunology, 2017, 8, 1638.	4.8	31
39	Utility of a Mouse Model of Osteoarthritis to Demonstrate Cartilage Protection by IFNÎ ³ -Primed Equine Mesenchymal Stem Cells. Frontiers in Immunology, 2016, 7, 392.	4.8	30
40	Comparison between Stromal Vascular Fraction and Adipose Mesenchymal Stem Cells in Remodeling Hypertrophic Scars. PLoS ONE, 2016, 11, e0156161.	2.5	55
41	Reply. Arthritis and Rheumatology, 2016, 68, 2348-2350.	5.6	1
42	Human adipose mesenchymal stem cells as potent anti-fibrosis therapy for systemic sclerosis. Journal of Autoimmunity, 2016, 70, 31-39.	6.5	98
43	Antifibrotic, Antioxidant, and Immunomodulatory Effects of Mesenchymal Stem Cells in HOClâ€Induced Systemic Sclerosis. Arthritis and Rheumatology, 2016, 68, 1013-1025.	5.6	70
44	Adipose Mesenchymal Stromal Cell-Based Therapy for Severe Osteoarthritis of the Knee: A Phase I Dose-Escalation Trial. Stem Cells Translational Medicine, 2016, 5, 847-856.	3.3	389
45	The immunosuppressive signature of menstrual blood mesenchymal stem cells entails opposite effects on experimental arthritis and graft versus host diseases. Stem Cells, 2016, 34, 456-469.	3.2	69
46	Mesenchymal Stem Cell-Derived Interleukin 1 Receptor Antagonist Promotes Macrophage Polarization and Inhibits B Cell Differentiation. Stem Cells, 2016, 34, 483-492.	3.2	209
47	Inhibition of Osteoarthritis by Adiposeâ€Derived Stromal Cells Overexpressing Fraâ€1 in Mice. Arthritis and Rheumatology, 2016, 68, 138-151.	5.6	13
48	PLGA-based microcarriers induce mesenchymal stem cell chondrogenesis and stimulate cartilage repair in osteoarthritis. Biomaterials, 2016, 88, 60-69.	11.4	77
49	Deregulation and therapeutic potential of microRNAs in arthritic diseases. Nature Reviews Rheumatology, 2016, 12, 211-220.	8.0	118
50	Therapeutic application of mesenchymal stem cells in osteoarthritis. Expert Opinion on Biological Therapy, 2016, 16, 33-42.	3.1	73
51	Survival and Biodistribution of Xenogenic Adipose Mesenchymal Stem Cells Is Not Affected by the Degree of Inflammation in Arthritis. PLoS ONE, 2015, 10, e0114962.	2.5	73
52	PLA-poloxamer/poloxamine copolymers for ligament tissue engineering: sound macromolecular design for degradable scaffolds and MSC differentiation. Biomaterials Science, 2015, 3, 617-626.	5.4	25
53	In vitro and in vivo characterization of antibacterial activity and biocompatibility: A study on silver-containing phosphonate monolayers on titanium. Acta Biomaterialia, 2015, 15, 266-277.	8.3	58
54	Adipose Mesenchymal Stem Cells Isolated after Manual or Water-jet-Assisted Liposuction Display Similar Properties. Frontiers in Immunology, 2015, 6, 655.	4.8	24

#	Article	IF	CITATIONS
55	Involvement of Angiopoietin-like 4 in Matrix Remodeling during Chondrogenic Differentiation of Mesenchymal Stem Cells. Journal of Biological Chemistry, 2014, 289, 8402-8412.	3.4	28
56	p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Research and Therapy, 2014, 16, R58.	3 . 5	175
57	Promyelocytic leukemia zinc-finger induction signs mesenchymal stem cell commitment: identification of a key marker for stemness maintenance?. Stem Cell Research and Therapy, 2014, 5, 27.	5.5	7
58	Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Research and Therapy, 2013, 4, 65.	5 . 5	366
59	New PLGA–P188–PLGA matrix enhances TGF-β3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells. Journal of Controlled Release, 2013, 170, 99-110.	9.9	80
60	Adiposeâ€Derived Mesenchymal Stem Cells Exert Antiinflammatory Effects on Chondrocytes and Synoviocytes From Osteoarthritis Patients Through Prostaglandin E ₂ . Arthritis and Rheumatism, 2013, 65, 1271-1281.	6.7	205
61	Mesenchymal stem cells in regenerative medicine applied toÂrheumatic diseases: Role of secretome and exosomes. Biochimie, 2013, 95, 2229-2234.	2.6	214
62	Longâ€Term Detection of Human Adiposeâ€Derived Mesenchymal Stem Cells After Intraarticular Injection in SCID Mice. Arthritis and Rheumatism, 2013, 65, 1786-1794.	6.7	106
63	Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis. Stem Cell Research, 2013, 11, 834-844.	0.7	143
64	Sox9-Regulated miRNA-574-3p Inhibits Chondrogenic Differentiation of Mesenchymal Stem Cells. PLoS ONE, 2013, 8, e62582.	2.5	87
65	Antiinflammatory and chondroprotective effects of intraarticular injection of adiposeâ€derived stem cells in experimental osteoarthritis. Arthritis and Rheumatism, 2012, 64, 3604-3613.	6.7	286
66	Mesenchymal Stem Cells Repress Th17 Molecular Program through the PD-1 Pathway. PLoS ONE, 2012, 7, e45272.	2.5	161
67	Mesenchymal Stem Cells: New Insights into Bone Regenerative Applications. Journal of Biomaterials and Tissue Engineering, 2012, 2, 14-28.	0.1	11
68	Therapeutic Applications of Mesenchymal Stem Cells for Cartilage Repair. Journal of Biomaterials and Tissue Engineering, 2012, 2, 29-39.	0.1	2
69	Mesenchymal stem cell-based therapies in regenerative medicine: applications in rheumatology. Stem Cell Research and Therapy, 2011, 2, 14.	5. 5	145
70	Mesenchymal stem cells in osteoarticular diseases. Regenerative Medicine, 2011, 6, 44-51.	1.7	59
71	Therapeutic mesenchymal stem or stromal cells in rheumatic diseases: rationale, clinical data and perspectives. Clinical Investigation, 2011, 1, 1269-1277.	0.0	2
72	Skin fibroblasts are potent suppressors of inflammation in experimental arthritis. Annals of the Rheumatic Diseases, 2011, 70, 1671-1676.	0.9	38

#	Article	IF	Citations
73	The role of pharmacologically active microcarriers releasing TGF- \hat{l}^2 3 in cartilage formation in vivo by mesenchymal stem cells. Biomaterials, 2010, 31, 6485-6493.	11.4	97
74	Quantitative imaging of cartilage and bone for functional assessment of gene therapy approaches in experimental arthritis. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 387-394.	2.7	8
75	IL-6-Dependent PGE2 Secretion by Mesenchymal Stem Cells Inhibits Local Inflammation in Experimental Arthritis. PLoS ONE, 2010, 5, e14247.	2.5	331
76	Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Research and Therapy, 2010, 1, 2.	5.5	419
77	Multipotent mesenchymal stromal cells and rheumatoid arthritis: risk or benefit?. Rheumatology, 2009, 48, 1185-1189.	1.9	66
78	Transcriptomic Analysis Identifies Foxo3A as a Novel Transcription Factor Regulating Mesenchymal Stem Cell Chrondrogenic Differentiation. Cloning and Stem Cells, 2009, 11, 407-416.	2.6	21
79	Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends in Biotechnology, 2009, 27, 307-314.	9.3	408
80	Specific Lineage-Priming of Bone Marrow Mesenchymal Stem Cells Provides the Molecular Framework for Their Plasticity. Stem Cells, 2009, 27, 1142-1151.	3.2	110
81	Comparative proteomic analysis of human mesenchymal and embryonic stem cells: Towards the definition of a mesenchymal stem cell proteomic signature. Proteomics, 2009, 9, 223-232.	2.2	82
82	Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nature Reviews Rheumatology, 2009, 5, 392-399.	8.0	278
83	Cartilage Tissue Engineering: Towards a Biomaterial-Assisted Mesenchymal Stem Cell Therapy. Current Stem Cell Research and Therapy, 2009, 4, 318-329.	1.3	195
84	In Vivo Osteoprogenitor Potency of Human Stromal Cells from Different Tissues Does Not Correlate with Expression of POU5F1 or Its Pseudogenes. Stem Cells, 2008, 26, 2419-2424.	3.2	43
85	Cell specific differences between human adipose-derived and mesenchymal–stromal cells despite similar differentiation potentials. Experimental Cell Research, 2008, 314, 1575-1584.	2.6	316
86	Multipotent mesenchymal stromal cells and immune tolerance. Leukemia and Lymphoma, 2007, 48, 1283-1289.	1.3	129
87	Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes. Arthritis Research and Therapy, 2007, 9, R33.	3.5	149
88	Mesenchymal Stem Cells Inhibit the Differentiation of Dendritic Cells Through an Interleukin-6-Dependent Mechanism. Stem Cells, 2007, 25, 2025-2032.	3.2	562
89	Earlier Onset of Syngeneic Tumors in the Presence of Mesenchymal Stem Cells. Transplantation, 2006, 82, 1060-1066.	1.0	122
90	Functional Neuronal Differentiation of Bone Marrowâ€Derived Mesenchymal Stem Cells. Stem Cells, 2006, 24, 2868-2876.	3.2	215

#	Article	IF	CITATIONS
91	Immature Dendritic Cells Suppress Collagen-Induced Arthritis by In Vivo Expansion of CD49b+ Regulatory T Cells. Journal of Immunology, 2006, 177, 3806-3813.	0.8	94
92	Régénération du cartilage à partir de cellules souches mésenchymateuses. Revue Du Rhumatisme (Edition Francaise), 2005, 72, 360-364.	0.0	0
93	Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor α in collagenâ€induced arthritis. Arthritis and Rheumatism, 2005, 52, 1595-1603.	6.7	344
94	Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Research and Therapy, 2005, 7, R1304.	3.5	178
95	Short-Term BMP-2 Expression Is Sufficient for In Vivo Osteochondral Differentiation of Mesenchymal Stem Cells. Stem Cells, 2004, 22, 74-85.	3.2	212
96	Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Experimental Cell Research, 2004, 295, 395-406.	2.6	363
97	Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 2003, 102, 3837-3844.	1.4	1,079
98	Tetracycline Transcriptional Silencer Tightly Controls Transgene Expression AfterIn VivoIntramuscular Electrotransfer: Application to Interleukin 10 Therapy in Experimental Arthritis. Human Gene Therapy, 2002, 13, 2161-2172.	2.7	67
99	Genetically Engineered Antibodies in Gene Transfer and Gene Therapy. Human Gene Therapy, 1998, 9, 2165-2175.	2.7	28
100	Towards efficient cell targeting by recombinant retroviruses. Trends in Molecular Medicine, 1997, 3, 396-403.	2.6	9