Juan J Rodriguez Jimenez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4070323/publications.pdf

Version: 2024-02-01

300 papers

16,046 citations

66 h-index

14644

28275 105 g-index

303 all docs 303 docs citations

times ranked

303

13488 citing authors

#	Article	IF	Citations
1	An overview of ionic liquid degradation by advanced oxidation processes. Critical Reviews in Environmental Science and Technology, 2022, 52, 2844-2887.	6.6	7
2	Highly stable UiO-66-NH2 by the microwave-assisted synthesis for solar photocatalytic water treatment. Journal of Environmental Chemical Engineering, 2022, 10, 107122.	3.3	32
3	Solar photocatalytic degradation of parabens using UiO-66-NH2. Separation and Purification Technology, 2022, 286, 120467.	3.9	58
4	Activity and Stability of Pd Bimetallic Catalysts for Catalytic Nitrate Reduction. Catalysts, 2022, 12, 729.	1.6	3
5	A review on alkaline earth metal titanates for applications in photocatalytic water purification. Chemical Engineering Journal, 2021, 409, 128110.	6.6	42
6	Integration of Hydrothermal Carbonization and Anaerobic Digestion for Energy Recovery of Biomass Waste: An Overview. Energy & Ene	2.5	53
7	Microwave-assisted synthesis of NH2-MIL-125(Ti) for the solar photocatalytic degradation of aqueous emerging pollutants in batch and continuous tests. Journal of Environmental Chemical Engineering, 2021, 9, 106230.	3.3	56
8	TiO2-carbon microspheres as photocatalysts for effective remediation of pharmaceuticals under simulated solar light. Separation and Purification Technology, 2021, 275, 119169.	3.9	38
9	Thiamethoxam removal by Fenton and biological oxidation. Journal of Chemical Technology and Biotechnology, 2020, 95, 913-921.	1.6	11
10	Biological oxidation of cholineâ€based ionic liquids in sequencing batch reactors. Journal of Chemical Technology and Biotechnology, 2020, 95, 922-931.	1.6	7
11	Control of selectivity in the reduction of nitrate by shielding of Pd–Cu/C catalysts with AOT. Journal of Industrial and Engineering Chemistry, 2020, 82, 42-49.	2.9	10
12	Cation and anion effect on the biodegradability and toxicity of imidazolium– and choline–based ionic liquids. Chemosphere, 2020, 240, 124947.	4.2	73
13	Anaerobic co-digestion of the process water from waste activated sludge hydrothermally treated with primary sewage sludge. A new approach for sewage sludge management. Renewable Energy, 2020, 146, 435-443.	4.3	45
14	Structured photocatalysts for the removal of emerging contaminants under visible or solar light., 2020, , 41-98.		6
15	Toxicity and inhibition assessment of ionic liquids by activated sludge. Ecotoxicology and Environmental Safety, 2020, 187, 109836.	2.9	25
16	Metal–organic frameworks for water purification. , 2020, , 241-283.		5
17	Understanding Hydrodechlorination of Chloromethanes. Past and Future of the Technology. Catalysts, 2020, 10, 1462.	1.6	8
18	Removal of emerging pollutants in aqueous phase by heterogeneous Fenton and photo-Fenton with Fe2O3-TiO2-clay heterostructures. Environmental Science and Pollution Research, 2020, 27, 38434-38445.	2.7	29

#	Article	IF	CITATIONS
19	High load drug release systems based on carbon porous nanocapsule carriers. Ibuprofen case study. Journal of Materials Chemistry B, 2020, 8, 5293-5304.	2.9	21
20	Deactivation and regeneration of activated carbon-supported Rh and Ru catalysts in the hydrodechlorination of chloromethanes into light olefins. Chemical Engineering Journal, 2020, 397, 125479.	6.6	11
21	Thermal Post-Treatments to Enhance the Water Stability of NH2-MIL-125(Ti). Catalysts, 2020, 10, 603.	1.6	30
22	Promoting Light Hydrocarbons Yield by Catalytic Hydrodechlorination of Residual Chloromethanes Using Palladium Supported on Zeolite Catalysts. Catalysts, 2020, 10, 199.	1.6	12
23	Review on Activated Carbons by Chemical Activation with FeCl3. Journal of Carbon Research, 2020, 6, 21.	1.4	86
24	Intensification of catalytic wet peroxide oxidation with microwave radiation: Activity and stability of carbon materials. Separation and Purification Technology, 2019, 209, 301-306.	3.9	24
25	CO ₂ Capture by Supported Ionic Liquid Phase: Highlighting the Role of the Particle Size. ACS Sustainable Chemistry and Engineering, 2019, 7, 13089-13097.	3.2	24
26	Selectivity to Olefins in the Hydrodechlorination of Chloroform with Activated Carbon-Supported Palladium Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 20592-20600.	1.8	9
27	Recycling of Gas Phase Residual Dichloromethane by Hydrodechlorination: Regeneration of Deactivated Pd/C Catalysts. Catalysts, 2019, 9, 733.	1.6	9
28	Effect of Activating Agent on the Properties of TiO2/Activated Carbon Heterostructures for Solar Photocatalytic Degradation of Acetaminophen. Materials, 2019, 12, 378.	1.3	51
29	Photostability and photocatalytic degradation of ionic liquids in water under solar light. RSC Advances, 2019, 9, 2026-2033.	1.7	18
30	Mixed Ti-Zr metal-organic-frameworks for the photodegradation of acetaminophen under solar irradiation. Applied Catalysis B: Environmental, 2019, 253, 253-262.	10.8	137
31	N-Doped CMK-3 Carbons Supporting Palladium Nanoparticles as Catalysts for Hydrodechlorination. Industrial & Description of the Research, 2019, 58, 4355-4363.	1.8	22
32	Reaction pathways of heat-activated persulfate oxidation of naphthenic acids in the presence and absence of dissolved oxygen in water. Chemical Engineering Journal, 2019, 370, 695-705.	6.6	24
33	Iron catalyst supported on modified kaolin for catalytic wet peroxide oxidation. Clay Minerals, 2019, 54, 67-73.	0.2	10
34	Low-Cost Activated Grape Seed-Derived Hydrochar through Hydrothermal Carbonization and Chemical Activation for Sulfamethoxazole Adsorption. Applied Sciences (Switzerland), 2019, 9, 5127.	1.3	33
35	Production of hydrogen from brewery wastewater by aqueous phase reforming with Pt/C catalysts. Applied Catalysis B: Environmental, 2019, 245, 367-375.	10.8	39
36	Anaerobic co-digestion of the aqueous phase from hydrothermally treated waste activated sludge with primary sewage sludge. A kinetic study. Journal of Environmental Management, 2019, 231, 726-733.	3.8	48

#	Article	IF	CITATIONS
37	Removal of imidazolium-based ionic liquid by coupling Fenton and biological oxidation. Journal of Hazardous Materials, 2019, 365, 289-296.	6.5	28
38	Catalytic wet peroxide oxidation of imidazolium-based ionic liquids: Catalyst stability and biodegradability enhancement. Chemical Engineering Journal, 2019, 376, 120431.	6.6	13
39	Semiconductor Photocatalysis for Water Purification. , 2019, , 581-651.		68
40	A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification. Catalysts, 2019, 9, 52.	1.6	215
41	C-modified TiO2 using lignin as carbon precursor for the solar photocatalytic degradation of acetaminophen. Chemical Engineering Journal, 2019, 358, 1574-1582.	6.6	82
42	Valorization of microalgal biomass by hydrothermal carbonization and anaerobic digestion. Bioresource Technology, 2019, 274, 395-402.	4.8	66
43	Mesophilic anaerobic co-digestion of the organic fraction of municipal solid waste with the liquid fraction from hydrothermal carbonization of sewage sludge. Waste Management, 2018, 76, 315-322.	3.7	72
44	Enhancement of the activity of Pd/C catalysts in aqueous phase hydrodechlorination through doping of carbon supports. Catalysis Science and Technology, 2018, 8, 2598-2605.	2.1	19
45	Twoâ€step persulfate and Fenton oxidation of naphthenic acids in water. Journal of Chemical Technology and Biotechnology, 2018, 93, 2262-2270.	1.6	13
46	Electrolysis with diamond anodes: Eventually, there are refractory species!. Chemosphere, 2018, 195, 771-776.	4.2	18
47	Removal of imidazolium- and pyridinium-based ionic liquids by Fenton oxidation. Environmental Science and Pollution Research, 2018, 25, 34930-34937.	2.7	33
48	Effect of inoculum source and initial concentration on the anaerobic digestion of the liquid fraction from hydrothermal carbonisation of sewage sludge. Renewable Energy, 2018, 127, 697-704.	4.3	69
49	Cyclohexanoic acid breakdown by two-step persulfate and heterogeneous Fenton-like oxidation. Applied Catalysis B: Environmental, 2018, 232, 429-435.	10.8	31
50	Valorization of chloromethanes by hydrodechlorination with metallic catalysts. Catalysis Today, 2018, 310, 75-85.	2.2	21
51	Adsorption of antipyrine by activated carbons from FeCl3-activation of Tara gum. Chemical Engineering Journal, 2018, 333, 58-65.	6.6	92
52	Effect of structural ordering of the carbon support on the behavior of Pd catalysts in aqueous-phase hydrodechlorination. Chemical Engineering Science, 2018, 176, 400-408.	1.9	13
53	Valorisation of the liquid fraction from hydrothermal carbonisation of sewage sludge by anaerobic digestion. Journal of Chemical Technology and Biotechnology, 2018, 93, 450-456.	1.6	59
54	Properties of Carbon-supported Precious Metals Catalysts under Reductive Treatment and Their Influence in the Hydrodechlorination of Dichloromethane. Catalysts, 2018, 8, 664.	1.6	9

#	Article	IF	CITATIONS
55	A Review on the Synthesis and Characterization of Biomass-Derived Carbons for Adsorption of Emerging Contaminants from Water. Journal of Carbon Research, 2018, 4, 63.	1.4	80
56	Exploration of the treatment of fish-canning industry effluents by aqueous-phase reforming using Pt/C catalysts. Environmental Science: Water Research and Technology, 2018, 4, 1979-1987.	1.2	16
57	Stability of carbon-supported iron catalysts for catalytic wet peroxide oxidation of ionic liquids. Journal of Environmental Chemical Engineering, 2018, 6, 6444-6450.	3.3	7
58	Activated carbon as catalyst for microwave-assisted wet peroxide oxidation of aromatic hydrocarbons. Environmental Science and Pollution Research, 2018, 25, 27748-27755.	2.7	13
59	Catalytic reduction of bromate over catalysts based on Pd nanoparticles synthesized via water-in-oil microemulsion. Applied Catalysis B: Environmental, 2018, 237, 206-213.	10.8	19
60	Assessment the ecotoxicity and inhibition of imidazolium ionic liquids by respiration inhibition assays. Ecotoxicology and Environmental Safety, 2018, 162, 29-34.	2.9	31
61	Chloroform conversion into ethane and propane by catalytic hydrodechlorination with Pd supported on activated carbons from lignin. Catalysis Science and Technology, 2018, 8, 3926-3935.	2.1	21
62	Anaerobic Co-digestion of the Organic Fraction of Municipal Solid Waste and the Liquid Fraction From the Hydrothermal Carbonization of Industrial Sewage Sludge Under Thermophilic Conditions. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	13
63	Platinum and N-doped carbon nanostructures as catalysts in hydrodechlorination reactions. Applied Catalysis B: Environmental, 2018, 238, 609-617.	10.8	32
64	From kinetics to equilibrium control in CO2 capture columns using Encapsulated Ionic Liquids (ENILs). Chemical Engineering Journal, 2018, 348, 661-668.	6.6	46
65	Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants. Journal of Hazardous Materials, 2017, 322, 233-242.	6.5	97
66	CWPO of bisphenol A with iron catalysts supported on microporous carbons from grape seeds activation. Chemical Engineering Journal, 2017, 318, 153-160.	6.6	25
67	Innovative W-doped titanium dioxide anchored on clay for photocatalytic removal of atrazine. Catalysis Today, 2017, 280, 21-28.	2.2	73
68	Dechlorination and oxidative degradation of 4-chlorophenol with nanostructured iron-silver alginate beads. Journal of Environmental Chemical Engineering, 2017, 5, 838-842.	3.3	16
69	Application of CWPO to the treatment of pharmaceutical emerging pollutants in different water matrices with a ferromagnetic catalyst. Journal of Hazardous Materials, 2017, 331, 45-54.	6.5	64
70	Effect of the operating conditions on the colloidal and microemulsion synthesis of Pt in aqueous phase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 525, 77-84.	2.3	5
71	Metal-surfactant interaction as a tool to control the catalytic selectivity of Pd catalysts. Applied Catalysis A: General, 2017, 529, 32-39.	2.2	9
72	Enhanced anaerobic degradability of highly polluted pesticides-bearing wastewater under thermophilic conditions. Journal of Hazardous Materials, 2017, 339, 320-329.	6. 5	30

#	Article	lF	Citations
73	Combining HDC and CWPO for the removal of p -chloro- m -cresol from water under ambient-like conditions. Applied Catalysis B: Environmental, 2017, 216, 20-29.	10.8	13
74	Hollow Nitrogen- or Boron-Doped Carbon Submicrospheres with a Porous Shell: Preparation and Application as Supports for Hydrodechlorination Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 7665-7674.	1.8	19
75	Kinetic modeling of wet peroxide oxidation with a carbon black catalyst. Applied Catalysis B: Environmental, 2017, 209, 701-710.	10.8	22
76	Synthesis, characterization and application of nanoscale zero-valent iron in the degradation of the azo dye Disperse Red 1. Journal of Environmental Chemical Engineering, 2017, 5, 628-634.	3.3	37
77	Fixed-bed adsorption of ionic liquids onto activated carbon from aqueous phase. Journal of Environmental Chemical Engineering, 2017, 5, 5347-5351.	3.3	26
78	P-, B- and N-doped carbon black for the catalytic wet peroxide oxidation of phenol: Activity, stability and kinetic studies. Catalysis Communications, 2017, 102, 131-135.	1.6	19
79	Effect of the Pt–Pd molar ratio in bimetallic catalysts supported on sulfated zirconia on the gas-phase hydrodechlorination of chloromethanes. Journal of Catalysis, 2017, 352, 562-571.	3.1	25
80	Selective Reduction of Nitrite to Nitrogen with Carbon-Supported Pd–AOT Nanoparticles. Industrial & Lamp; Engineering Chemistry Research, 2017, 56, 11745-11754.	1.8	11
81	An overview on the application of advanced oxidation processes for the removal of naphthenic acids from water. Critical Reviews in Environmental Science and Technology, 2017, 47, 1337-1370.	6.6	27
82	Microwave-assisted catalytic wet peroxide oxidation. Comparison of Fe catalysts supported on activated carbon and ?-alumina. Applied Catalysis B: Environmental, 2017, 218, 637-642.	10.8	47
83	Polymer-based spherical activated carbon as catalytic support for hydrodechlorination reactions. Applied Catalysis B: Environmental, 2017, 218, 498-505.	10.8	31
84	Iron catalysts by chemical activation of sewage sludge with FeCl 3 for CWPO. Chemical Engineering Journal, 2017, 318, 224-230.	6.6	72
85	Naturally-occurring iron minerals as inexpensive catalysts for CWPO. Applied Catalysis B: Environmental, 2017, 203, 166-173.	10.8	61
86	Degradation of emerging pollutants in water under solar irradiation using novel TiO 2 -ZnO/clay nanoarchitectures. Chemical Engineering Journal, 2017, 309, 596-606.	6.6	134
87	Ag-Coated Heterostructures of ZnO-TiO2/Delaminated Montmorillonite as Solar Photocatalysts. Materials, 2017, 10, 960.	1.3	39
88	Improved synthesis and hydrothermal stability of Pt/C catalysts based on size-controlled nanoparticles. Catalysis Science and Technology, 2016, 6, 5196-5206.	2.1	29
89	On the effect of Ce incorporation on pillared clay-supported Pt and Ir catalysts for aqueous-phase hydrodechlorination. Applied Catalysis B: Environmental, 2016, 197, 236-243.	10.8	17
90	UV-LED assisted catalytic wet peroxide oxidation with a Fe(II)-Fe(III)/activated carbon catalyst. Applied Catalysis B: Environmental, 2016, 192, 350-356.	10.8	36

#	Article	IF	CITATIONS
91	Fouling control in membrane bioreactors with sewage-sludge based adsorbents. Water Research, 2016, 105, 65-75.	5.3	18
92	Application of intensified Fenton oxidation to the treatment of hospital wastewater: Kinetics, ecotoxicity and disinfection. Journal of Environmental Chemical Engineering, 2016, 4, 4107-4112.	3.3	45
93	Carbon Materials from Lignin and Their Applications. Biofuels and Biorefineries, 2016, , 217-262.	0.5	8
94	Mineralization of naphtenic acids with thermally-activated persulfate: The important role of oxygen. Journal of Hazardous Materials, 2016, 318, 355-362.	6.5	48
95	Encapsulated Ionic Liquids for CO ₂ Capture: Using 1â€Butylâ€methylimidazolium Acetate for Quick and Reversible CO ₂ Chemical Absorption ChemPhysChem, 2016, 17, 3891-3899.	1.0	51
96	Improving the Fenton process by visible LED irradiation. Environmental Science and Pollution Research, 2016, 23, 23449-23455.	2.7	15
97	Biomass-Derived Microporous Carbon Materials with an Open Structure of Cross-Linked Sub-microfibers with Enhanced Adsorption Characteristics. Energy & Energy & 2016, 30, 9510-9516.	2.5	0
98	Dechlorination of Dichloromethane by Hydrotreatment with Bimetallic Pd-Pt/C Catalyst. Catalysis Letters, 2016, 146, 2614-2621.	1.4	13
99	Platinum Nanoparticles Supported on Activated Carbon Catalysts for the Gas-Phase Hydrodechlorination of Dichloromethane: Influence of Catalyst Composition and Operating Conditions. Nanomaterials and Nanotechnology, 2016, 6, 18.	1.2	7
100	Ammonia capture from the gas phase by encapsulated ionic liquids (ENILs). RSC Advances, 2016, 6, 61650-61660.	1.7	45
101	Degradation of imidazolium-based ionic liquids by catalytic wet peroxide oxidation with carbon and magnetic iron catalysts. Journal of Chemical Technology and Biotechnology, 2016, 91, 2882-2887.	1.6	18
102	Diuron Multilayer Adsorption on Activated Carbon from CO ₂ Activation of Grape Seeds. Chemical Engineering Communications, 2016, 203, 103-113.	1.5	21
103	Enhanced activity of carbon-supported Pd–Pt catalysts in the hydrodechlorination of dichloromethane. Applied Catalysis B: Environmental, 2016, 184, 55-63.	10.8	38
104	Solar photocatalytic purification of water with Ce-doped TiO2/clay heterostructures. Catalysis Today, 2016, 266, 36-45.	2.2	69
105	Catalysts based on large size-controlled Pd nanoparticles for aqueous-phase hydrodechlorination. Chemical Engineering Journal, 2016, 294, 40-48.	6.6	27
106	Multiple approaches to control and assess the size of Pd nanoparticles synthesized via water-in-oil microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497, 28-34.	2.3	19
107	On the performance of Pd and Rh catalysts over different supports in the hydrodechlorination of the MCPA herbicide. Applied Catalysis B: Environmental, 2016, 186, 151-156.	10.8	19
108	Assessment of toxicity and biodegradability on activated sludge of priority and emerging pollutants. Environmental Technology (United Kingdom), 2016, 37, 713-721.	1.2	35

#	Article	IF	CITATIONS
109	Degradation of organochlorinated pollutants in water by catalytic hydrodechlorination and photocatalysis. Catalysis Today, 2016, 266, 168-174.	2.2	23
110	Analysis of the deactivation of Pd, Pt and Rh on activated carbon catalysts in the hydrodechlorination of the MCPA herbicide. Applied Catalysis B: Environmental, 2016, 181, 429-435.	10.8	31
111	On the optimization of activated carbon-supported iron catalysts in catalytic wet peroxide oxidation process. Applied Catalysis B: Environmental, 2016, 181, 249-259.	10.8	53
112	Colloidal and microemulsion synthesis of rhenium nanoparticles in aqueous medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 202-210.	2.3	16
113	Kinetic Study of the Hydrodechlorination of Chloromethanes with Activated-Carbon-Supported Metallic Catalysts. Industrial & Engineering Chemistry Research, 2015, 54, 2023-2029.	1.8	13
114	Short-term fouling control by cyclic aeration in membrane bioreactors for cosmetic wastewater treatment. Desalination and Water Treatment, 2015, 56, 3599-3606.	1.0	11
115	Application of Fenton-like oxidation as pre-treatment for carbamazepine biodegradation. Chemical Engineering Journal, 2015, 264, 856-862.	6.6	60
116	Activity enhancement and selectivity tuneability in aqueous phase hydrodechlorination by use of controlled growth Pd-Rh nanoparticles. Applied Catalysis B: Environmental, 2015, 168-169, 283-292.	10.8	29
117	Gas-phase hydrodechlorination of mixtures of chloromethanes with activated carbon-supported platinum catalysts. Applied Catalysis B: Environmental, 2015, 179, 551-557.	10.8	26
118	Catalytic hydrodechlorination of p-chloro-m-cresol and 2,4,6-trichlorophenol with Pd and Rh supported on Al-pillared clays. Chemical Engineering Journal, 2015, 273, 363-370.	6.6	19
119	Titania–clay heterostructures with solar photocatalytic applications. Applied Catalysis B: Environmental, 2015, 176-177, 278-287.	10.8	78
120	Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review. Applied Catalysis B: Environmental, 2015, 176-177, 249-265.	10.8	593
121	Trends in the Intensification of the Fenton Process for Wastewater Treatment: An Overview. Critical Reviews in Environmental Science and Technology, 2015, 45, 2611-2692.	6.6	191
122	Hydrodechlorination activity of catalysts based on nitrogen-doped carbons from low-density polyethylene. Carbon, 2015, 87, 444-452.	5.4	16
123	Ozone as oxidation agent in cyclic activation of biochar. Fuel Processing Technology, 2015, 139, 42-48.	3.7	43
124	Deactivation of a Pd/AC catalyst in the hydrodechlorination of chlorinated herbicides. Catalysis Today, 2015, 241, 86-91.	2.2	30
125	Ionic liquids breakdown by Fenton oxidation. Catalysis Today, 2015, 240, 16-21.	2.2	64
126	Application of highâ€temperature Fenton oxidation for the treatment of sulfonation plant wastewater. Journal of Chemical Technology and Biotechnology, 2015, 90, 1839-1846.	1.6	22

#	Article	IF	Citations
127	Deactivation behavior of Pd/C and Pt/C catalysts in the gas-phase hydrodechlorination of chloromethanes: Structure–reactivity relationship. Applied Catalysis B: Environmental, 2015, 162, 532-543.	10.8	40
128	Comparison of bioaugmented EGSB and GAC–FBB reactors and their combination with aerobic SBR for the abatement of chlorophenols. Chemical Engineering Journal, 2015, 259, 277-285.	6.6	25
129	Treatment of cosmetic wastewater by a full-scale membrane bioreactor (MBR). Environmental Science and Pollution Research, 2014, 21, 12662-12670.	2.7	17
130	Anaerobic biodegradability of mixtures of pesticides in an expanded granular sludge bed reactor. Water Science and Technology, 2014, 69, 532-538.	1.2	13
131	Degradation of imidazoliumâ€based ionic liquids in aqueous solution by Fenton oxidation. Journal of Chemical Technology and Biotechnology, 2014, 89, 1197-1202.	1.6	53
132	Kinetic Analysis of 4-Chlorophenol Hydrodechlorination Catalyzed by Rh Nanoparticles Based on the Two-Step Reaction and Langmuir–Hinshelwood Mechanisms. Catalysis Letters, 2014, 144, 2080-2085.	1.4	9
133	Graphite and carbon black materials as catalysts for wet peroxide oxidation. Applied Catalysis B: Environmental, 2014, 144, 599-606.	10.8	54
134	Catalytic HDC/HDN of 4-chloronitrobenzene in water under ambient-like conditions with Pd supported on pillared clay. Applied Catalysis B: Environmental, 2014, 158-159, 175-181.	10.8	36
135	Complete degradation of the persistent antiâ€depressant sertraline in aqueous solution by solar photoâ€Fenton oxidation. Journal of Chemical Technology and Biotechnology, 2014, 89, 814-818.	1.6	19
136	Treatment of real winery wastewater by wet oxidation at mild temperature. Separation and Purification Technology, 2014, 129, 121-128.	3.9	45
137	Effect of size and oxidation state of size-controlled rhodium nanoparticles on the aqueous-phase hydrodechlorination of 4-chlorophenol. Chemical Engineering Journal, 2014, 240, 271-280.	6.6	55
138	Aqueous-phase hydrodechlorination of chlorophenols with pillared clays-supported Pt, Pd and Rh catalysts. Applied Catalysis B: Environmental, 2014, 148-149, 330-338.	10.8	110
139	Improved Î ³ -alumina-supported Pd and Rh catalysts for hydrodechlorination of chlorophenols. Applied Catalysis A: General, 2014, 488, 78-85.	2.2	35
140	Activation of waste tire char by cyclic liquid-phase oxidation. Fuel Processing Technology, 2014, 127, 157-162.	3.7	25
141	Fate of iron oxalates in aqueous solution: The role of temperature, iron species and dissolved oxygen. Journal of Environmental Chemical Engineering, 2014, 2, 2236-2241.	3.3	18
142	Application of intensified Fenton oxidation to the treatment of sawmill wastewater. Chemosphere, 2014, 109, 34-41.	4.2	57
143	Strategies to evaluate biodegradability: application to chlorinated herbicides. Environmental Science and Pollution Research, 2014, 21, 9445-9452.	2.7	28
144	Preparation of granular activated carbons from grape seeds by cycles of liquid phase oxidation and thermal desorption. Fuel Processing Technology, 2014, 118, 148-155.	3.7	23

#	Article	IF	CITATIONS
145	Coupling Fenton and biological oxidation for the removal of nitrochlorinated herbicides from water. Water Research, 2014, 49, 197-206.	5.3	43
146	Kinetics of wet peroxide oxidation of phenol with a gold/activated carbon catalyst. Chemical Engineering Journal, 2014, 253, 486-492.	6.6	34
147	Combining efficiently catalytic hydrodechlorination and wet peroxide oxidation (HDC–CWPO) for the abatement of organochlorinated water pollutants. Applied Catalysis B: Environmental, 2014, 150-151, 197-203.	10.8	22
148	ANALYSIS OF THE OPERATING CONDITIONS IN THE TREATMENT OF COSMETIC WASTEWATER BY SEQUENCING BATCH REACTORS. Environmental Engineering and Management Journal, 2014, 13, 2955-2962.	0.2	7
149	Improved wet peroxide oxidation strategies for the treatment of chlorophenols. Chemical Engineering Journal, 2013, 228, 646-654.	6.6	25
150	Low-temperature anaerobic treatment of low-strength pentachlorophenol-bearing wastewater. Bioresource Technology, 2013, 140, 349-356.	4.8	24
151	Development of porosity upon physical activation of grape seeds char by gas phase oxygen chemisorption–desorption cycles. Chemical Engineering Journal, 2013, 231, 172-181.	6.6	23
152	Oxidation Reactivity and Structure of LDPE-Derived Solid Carbons: A Temperature-Programmed Oxidation Study. Energy & Study. 21, 1151-1161.	2.5	14
153	Highly efficient application of activated carbon as catalyst for wet peroxide oxidation. Applied Catalysis B: Environmental, 2013, 140-141, 663-670.	10.8	91
154	Case study of the application of Fenton process to highly polluted wastewater from power plant. Journal of Hazardous Materials, 2013, 252-253, 180-185.	6.5	40
155	Degradation of chlorophenoxy herbicides by coupled Fenton and biological oxidation. Chemosphere, 2013, 93, 115-122.	4.2	53
156	Preparation of hollow submicrocapsules with a mesoporous carbon shell. Carbon, 2013, 59, 430-438.	5.4	21
157	Porous structure and morphology of granular chars from flash and conventional pyrolysis of grape seeds. Biomass and Bioenergy, 2013, 54, 123-132.	2.9	50
158	Colloidal templating synthesis and adsorption characteristics of microporous–mesoporous carbons from Kraft lignin. Carbon, 2013, 62, 233-239.	5.4	46
159	Activated carbon supported metal catalysts for reduction of nitrate in water with high selectivity towards N2. Applied Catalysis B: Environmental, 2013, 138-139, 141-148.	10.8	69
160	Identification of by-products and toxicity assessment in aqueous-phase hydrodechlorination of diuron with palladium on activated carbon catalysts. Chemosphere, 2013, 91, 1317-1323.	4.2	13
161	Chlorophenols breakdown by a sequential hydrodechlorination-oxidation treatment with a magnetic Pd–Fe/γ-Al2O3 catalyst. Water Research, 2013, 47, 3070-3080.	5.3	45
162	The use of cyclic voltammetry to assess the activity of carbon materials for hydrogen peroxide decomposition. Carbon, 2013, 60, 76-83.	5.4	43

#	Article	IF	CITATIONS
163	A ferromagnetic \hat{I}^3 -alumina-supported iron catalyst for CWPO. Application to chlorophenols. Applied Catalysis B: Environmental, 2013, 136-137, 218-224.	10.8	77
164	Optimized ionic liquids for toluene absorption. AICHE Journal, 2013, 59, 1648-1656.	1.8	90
165	Interactions of Ionic Liquids and Acetone: Thermodynamic Properties, Quantum-Chemical Calculations, and NMR Analysis. Journal of Physical Chemistry B, 2013, 117, 7388-7398.	1.2	68
166	Comparison of different precious metals in activated carbon-supported catalysts for the gas-phase hydrodechlorination of chloromethanes. Applied Catalysis B: Environmental, 2013, 132-133, 256-265.	10.8	59
167	On the Kinetics of Ionic Liquid Adsorption onto Activated Carbons from Aqueous Solution. Industrial & Lamp; Engineering Chemistry Research, 2013, 52, 2969-2976.	1.8	32
168	Enhanced Pd pillared clays by Rh inclusion for the catalytic hydrodechlorination of chlorophenols in water. Water Science and Technology, 2012, 65, 653-660.	1.2	9
169	Removal of chlorinated organic volatile compounds by gas phase adsorption with activated carbon. Chemical Engineering Journal, 2012, 211-212, 246-254.	6.6	99
170	Adsorption of 4-chlorophenol by inexpensive sewage sludge-based adsorbents. Chemical Engineering Research and Design, 2012, 90, 1807-1814.	2.7	58
171	Hydrodechlorination of dichloromethane with mono- and bimetallic Pd–Pt on sulfated and tungstated zirconia catalysts. Journal of Catalysis, 2012, 294, 207-215.	3.1	35
172	Encapsulated ionic liquids (ENILs): from continuous to discrete liquid phase. Chemical Communications, 2012, 48, 10046.	2.2	49
173	Treatment of Highly Polluted Hazardous Industrial Wastewaters by Combined Coagulation–Adsorption and High-Temperature Fenton Oxidation. Industrial & Engineering Chemistry Research, 2012, 51, 2888-2896.	1.8	65
174	Screening ionic liquids as suitable ammonia absorbents on the basis of thermodynamic and kinetic analysis. Separation and Purification Technology, 2012, 95, 188-195.	3.9	73
175	Catalytic behavior of size-controlled palladium nanoparticles in the hydrodechlorination of 4-chlorophenol in aqueous phase. Journal of Catalysis, 2012, 293, 85-93.	3.1	107
176	Triclosan breakdown by Fenton-like oxidation. Chemical Engineering Journal, 2012, 198-199, 275-281.	6.6	64
177	Mechanistic understanding of the behavior of diuron in the adsorption from water onto activated carbon. Chemical Engineering Journal, 2012, 198-199, 346-354.	6.6	27
178	Activated carbon from grape seeds upon chemical activation with phosphoric acid: Application to the adsorption of diuron from water. Chemical Engineering Journal, 2012, 203, 348-356.	6.6	160
179	Developing criteria for the recovery of ionic liquids from aqueous phase by adsorption with activated carbon. Separation and Purification Technology, 2012, 97, 11-19.	3.9	82
180	Inhibition of methanogenesis by chlorophenols: a kinetic approach. New Biotechnology, 2012, 30, 51-61.	2.4	27

#	Article	IF	CITATIONS
181	Granular Mesoporous Activated Carbons from Waste Tires by Cyclic Oxygen Chemisorption–Desorption. Industrial & Engineering Chemistry Research, 2012, 51, 2609-2614.	1.8	22
182	Chlorinated Byproducts from the Fenton-like Oxidation of Polychlorinated Phenols. Industrial & Engineering Chemistry Research, 2012, 51, 13092-13099.	1.8	36
183	Intensification of sequencing batch reactors by cometabolism and bioaugmentation with ⟨i>Pseudomonas putida⟨ i> for the biodegradation of 4â€chlorophenol. Journal of Chemical Technology and Biotechnology, 2012, 87, 1270-1275.	1.6	22
184	On the biodegradability of nitrophenols and their reaction products by catalytic hydrogenation*. Journal of Chemical Technology and Biotechnology, 2012, 87, 1263-1269.	1.6	6
185	Ligninâ€based activated carbons as adsorbents for crystal violet removal from aqueous solutions. Environmental Progress and Sustainable Energy, 2012, 31, 386-396.	1.3	29
186	Highly stable Fe on activated carbon catalysts for CWPO upon FeCl3 activation of lignin from black liquors. Catalysis Today, 2012, 187, 115-121.	2.2	76
187	Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions. Chemical Engineering Journal, 2012, 184, 176-183.	6.6	82
188	Supported gold nanoparticle catalysts for wet peroxide oxidation. Applied Catalysis B: Environmental, 2012, 111-112, 81-89.	10.8	56
189	Enhancement of cometabolic biodegradation of 4-chlorophenol induced with phenol and glucose as carbon sources by Comamonas testosteroni. Journal of Environmental Management, 2012, 95, S116-S121.	3.8	75
190	Anaerobic treatment of wastewater from used industrial oil recovery. Journal of Chemical Technology and Biotechnology, 2012, 87, 1320-1328.	1.6	18
191	Intensification of the Fenton Process by Increasing the Temperature. Industrial & Engineering Chemistry Research, 2011, 50, 866-870.	1.8	173
192	Density Functional Theory Analysis of Dichloromethane and Hydrogen Interaction with Pd Clusters: First Step to Simulate Catalytic Hydrodechlorination. Journal of Physical Chemistry C, 2011, 115, 14180-14192.	1.5	41
193	Effect of 2,4,6-trichlorophenol on the microbial activity of adapted anaerobic granular sludge bioaugmented with Desulfitobacterium strains. New Biotechnology, 2011, 29, 79-89.	2.4	26
194	Task-specific ionic liquids for efficient ammonia absorption. Separation and Purification Technology, 2011, 82, 43-52.	3.9	140
195	Hydrodechlorination of chloromethanes with a highly stable Pt on activated carbon catalyst. Journal of Catalysis, 2011, 279, 389-396.	3.1	62
196	Effects of heat treatment on the structure of LDPE-derived solid carbons. Chemical Engineering Journal, 2011, 172, 1126-1136.	6.6	9
197	Improved mineralization by combined advanced oxidation processes. Chemical Engineering Journal, 2011, 174, 134-142.	6.6	37
198	Cationic dyes removal by multilayer adsorption on activated carbons from lignin. Journal of Porous Materials, 2011, 18, 693-702.	1.3	19

#	Article	IF	CITATIONS
199	Comparison of experimental methods for determination of toxicity and biodegradability of xenobiotic compounds. Biodegradation, 2011, 22, 751-761.	1.5	49
200	Characterization of Supported Ionic Liquid Phase (SILP) materials prepared from different supports. Adsorption, 2011, 17, 561-571.	1.4	132
201	Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor. Journal of Hazardous Materials, 2011, 185, 1059-1065.	6.5	46
202	Highly stable Fe/γâ€Al ₂ O ₃ catalyst for catalytic wet peroxide oxidation. Journal of Chemical Technology and Biotechnology, 2011, 86, 497-504.	1.6	63
203	Influence of the structural and surface characteristics of activated carbon on the catalytic decomposition of hydrogen peroxide. Applied Catalysis A: General, 2011, 402, 146-155.	2.2	122
204	Activated carbons from sewage sludge. Desalination, 2011, 277, 377-382.	4.0	124
205	Compared activity and stability of Pd/Al2O3 and Pd/AC catalysts in 4-chlorophenol hydrodechlorination in different pH media. Applied Catalysis B: Environmental, 2011, 103, 128-135.	10.8	89
206	Comparison of activated carbon-supported Pd and Rh catalysts for aqueous-phase hydrodechlorination. Applied Catalysis B: Environmental, 2011, 106, 469-475.	10.8	81
207	Assessment of the generation of chlorinated byproducts upon Fenton-like oxidation of chlorophenols at different conditions. Journal of Hazardous Materials, 2011, 190, 993-1000.	6.5	109
208	Anaerobic biodegradation of 2,4,6-trichlorophenol in expanded granular sludge bed and fluidized bed biofilm reactors bioaugmented with Desulfitobacterium spp Water Science and Technology, 2011, 64, 293-299.	1.2	7
209	Hydrodechlorination of 4-chlorophenol in water using Rh–Al pillared clays. Chemical Engineering Journal, 2010, 160, 578-585.	6.6	35
210	Equilibrium and Kinetic Study of Congo Red Adsorption onto Lignin-Based Activated Carbons. Transport in Porous Media, 2010, 83, 573-590.	1.2	44
211	Hydrogen peroxide-promoted-CWAO of phenol with activated carbon. Applied Catalysis B: Environmental, 2010, 93, 339-345.	10.8	56
212	Hydrodechlorination of chloromethanes with Pd on activated carbon catalysts for the treatment of residual gas streams. Applied Catalysis B: Environmental, 2010, 96, 148-156.	10.8	48
213	Hydrodechlorination of dichloromethane with a Pd/AC catalyst: Reaction pathway and kinetics. Applied Catalysis B: Environmental, 2010, 98, 79-85.	10.8	53
214	Catalytic wet peroxide oxidation of cosmetic wastewaters with Fe-bearing catalysts. Catalysis Today, 2010, 151, 148-152.	2.2	81
215	Gas-phase hydrodechlorination of dichloromethane with activated carbon-supported metallic catalysts. Chemical Engineering Journal, 2010, 162, 599-608.	6.6	39
216	Hydrodechlorination of diuron in aqueous solution with Pd, Cu and Ni on activated carbon catalysts. Chemical Engineering Journal, 2010, 163, 212-218.	6.6	24

#	Article	lF	CITATIONS
217	Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: general framework. Hydrological Sciences Journal, 2010, 55, 1217-1233.	1.2	31
218	CWPO of 4-CP and industrial wastewater with Al–Fe pillared clays. Water Science and Technology, 2010, 61, 2161-2168.	1.2	18
219	Denitrification of Water with Activated Carbon-Supported Metallic Catalysts. Industrial & Samp; Engineering Chemistry Research, 2010, 49, 5603-5609.	1.8	51
220	Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts. Water Science and Technology, 2010, 61, 2769-2778.	1.2	20
221	Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: application to the Akrotiri basin and aquifer, Cyprus. Hydrological Sciences Journal, 2010, 55, 1234-1245.	1.2	25
222	Integrated CWPO and Biological Treatment for the Removal of 4-Chlorophenol From Water. Separation Science and Technology, 2010, 45, 1595-1602.	1.3	23
223	Anaerobic biodegradation of 2,4,6-trichlorophenol by methanogenic granular sludge: role of co-substrates and methanogenic inhibition. Water Science and Technology, 2009, 59, 1449-1456.	1.2	9
224	Unstructured kinetic model for reuterin and 1,3â€propanediol production by <i>Lactobacillus reuteri</i> from glycerol/glucose cofermentation. Journal of Chemical Technology and Biotechnology, 2009, 84, 675-680.	1.6	17
225	Pd–Al pillared clays as catalysts for the hydrodechlorination of 4-chlorophenol in aqueous phase. Journal of Hazardous Materials, 2009, 172, 214-223.	6. 5	51
226	Hydrodechlorination of 4-chlorophenol in water with formic acid using a Pd/activated carbon catalyst. Journal of Hazardous Materials, 2009, 161, 842-847.	6.5	52
227	Lignin-based activated carbons for adsorption of sodium dodecylbenzene sulfonate: Equilibrium and kinetic studies. Journal of Colloid and Interface Science, 2009, 332, 39-45.	5.0	53
228	Optimizing calcination temperature of Fe/activated carbon catalysts for CWPO. Catalysis Today, 2009, 143, 341-346.	2.2	66
229	Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: Influence of iron precursor and activated carbon surface. Applied Catalysis B: Environmental, 2009, 86, 69-77.	10.8	149
230	Cometabolic biodegradation of 4-chlorophenol by sequencing batch reactors at different temperatures. Bioresource Technology, 2009, 100, 4572-4578.	4.8	83
231	Adsorption of ionic liquids from aqueous effluents by activated carbon. Carbon, 2009, 47, 1846-1856.	5.4	138
232	Activation of Waste Tire Char upon Cyclic Oxygen Chemisorptionâ 'Desorption. Industrial & Desorption Engineering Chemistry Research, 2009, 48, 4664-4670.	1.8	21
233	Effects of Reactor Configuration on the Yield of Solid Carbon from Pyrolysis of Low-Density Polyethylene. Energy & Energy & 2009, 23, 6095-6101.	2.5	8
234	Steam Reforming of Methanol with Sm ₂ O ₃ â^'CeO ₂ -Supported Palladium Catalysts: Influence of the Thermal Treatments of Catalyst and Support. Industrial & Engineering Chemistry Research, 2009, 48, 8364-8372.	1.8	18

#	Article	IF	CITATIONS
235	Kinetics of 4-Chlorophenol Hydrodechlorination with Alumina and Activated Carbon-Supported Pd and Rh Catalysts. Industrial & Engineering Chemistry Research, 2009, 48, 3351-3358.	1.8	64
236	Comparison of UASB and EGSB performance on the anaerobic biodegradation of 2,4-dichlorophenol. Chemosphere, 2009, 76, 1192-1198.	4.2	58
237	Hydrodechlorination of 4-chlorophenol in aqueous phase with Pt–Al pillared clays using formic acid as hydrogen source. Applied Clay Science, 2009, 45, 206-212.	2.6	25
238	Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study. Water Research, 2009, 43, 4063-4069.	5.3	74
239	Influence of Operating Variables on Solid Carbons Obtained by Low-Density Polyethylene Pyrolysis in a Semicontinuous Fast Heating Quartz Reactor. Energy & Semicontinuous Fast Heating Reactor. Energy & Semicontinuous Fast Heat	2.5	10
240	An overview of the application of Fenton oxidation to industrial wastewaters treatment. Journal of Chemical Technology and Biotechnology, 2008, 83, 1323-1338.	1.6	546
241	Hydrodechlorination of alachlor in water using Pd, Ni and Cu catalysts supported on activated carbon. Applied Catalysis B: Environmental, 2008, 78, 259-266.	10.8	45
242	Surface modification of carbon-supported iron catalyst during the wet air oxidation of phenol: Influence on activity, selectivity and stability. Applied Catalysis B: Environmental, 2008, 81, 105-114.	10.8	41
243	Role of the Activated Carbon Surface on Catalytic Wet Peroxide Oxidation. Industrial & Engineering Chemistry Research, 2008, 47, 8166-8174.	1.8	61
244	Kinetics of the Hydrodechlorination of 4-Chlorophenol in Water Using Pd, Pt, and Rh/Al ₂ O ₃ Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 3840-3846.	1.8	113
245	Detoxification of Kraft pulp ECF bleaching effluents by catalytic hydrotreatment. Water Research, 2007, 41, 915-923.	5.3	17
246	Adsorption of Aromatic Compounds on Activated Carbons from Lignin:Â Equilibrium and Thermodynamic Study. Industrial & Engineering Chemistry Research, 2007, 46, 4982-4990.	1.8	34
247	Activated Carbons from Lignin: Their Application in Liquid Phase Adsorption. Separation Science and Technology, 2007, 42, 3363-3389.	1.3	23
248	Computational Approach to Nuclear Magnetic Resonance in 1-Alkyl-3-methylimidazolium Ionic Liquids. Journal of Physical Chemistry B, 2007, 111, 168-180.	1.2	66
249	Evolution of Ecotoxicity upon Fenton's Oxidation of Phenol in Water. Environmental Science & Emp; Technology, 2007, 41, 7164-7170.	4.6	118
250	Adsorption of Aromatic Compounds on Activated Carbons from Lignin:  Kinetic Study. Industrial & Engineering Chemistry Research, 2007, 46, 2853-2860.	1.8	33
251	Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts. Chemical Engineering Journal, 2007, 131, 65-71.	6.6	95
252	Catalytic wet air oxidation of phenol with modified activated carbons and Fe/activated carbon catalysts. Applied Catalysis B: Environmental, 2007, 76, 135-145.	10.8	67

#	Article	IF	Citations
253	A kinetic study of reuterin production by Lactobacillus reuteri PRO 137 in resting cells. Biochemical Engineering Journal, 2007, 35, 218-225.	1.8	21
254	Application of Fenton oxidation to cosmetic wastewaters treatment. Journal of Hazardous Materials, 2007, 143, 128-134.	6.5	233
255	Phenol oxidation by a sequential CWPO–CWAO treatment with a Fe/AC catalyst. Journal of Hazardous Materials, 2007, 146, 582-588.	6.5	36
256	Gas-Phase Hydrodechlorination of Dichloromethane at Low Concentrations with Palladium/Carbon Catalysts. Industrial & Engineering Chemistry Research, 2006, 45, 7760-7766.	1.8	38
257	A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation. Chemical Engineering Journal, 2006, 118, 29-35.	6.6	101
258	Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst. Applied Catalysis B: Environmental, 2006, 62, 115-120.	10.8	62
259	Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Applied Catalysis B: Environmental, 2006, 65, 261-268.	10.8	290
260	Hydrodechlorination of 4-chlorophenol in aqueous phase using Pd/AC catalysts prepared with modified active carbon supports. Applied Catalysis B: Environmental, 2006, 67, 68-76.	10.8	105
261	Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst. Applied Catalysis B: Environmental, 2006, 67, 206-216.	10.8	62
262	Modification of ammonium lignosulfonate by phenolation for use in phenolic resins. Bioresource Technology, 2005, 96, 1013-1018.	4.8	137
263	Chemical Pathway and Kinetics of Phenol Oxidation by Fenton's Reagent. Environmental Science & Environmental Science & Technology, 2005, 39, 9295-9302.	4.6	545
264	Influence of Water Vapor on the Adsorption of VOCs on Ligninâ€Based Activated Carbons. Separation Science and Technology, 2005, 40, 3113-3135.	1.3	61
265	Effects of Support Surface Composition on the Activity and Selectivity of Pd/C Catalysts in Aqueous-Phase Hydrodechlorination Reactions. Industrial & Engineering Chemistry Research, 2005, 44, 6661-6667.	1.8	65
266	Improved solid fuels from co-pyrolysis of a high-sulphur content coal and different lignocellulosic wastes. Fuel, 2004, 83, 1585-1590.	3.4	53
267	Evolution of Toxicity upon Wet Catalytic Oxidation of Phenol. Environmental Science & Emp; Technology, 2004, 38, 133-138.	4.6	148
268	Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors. Water Research, 2004, 38, 3043-3050.	5.3	212
269	Influence of Surface Composition and Pore Structure on Cr(III) Adsorption onto Activated Carbons. Industrial & Engineering Chemistry Research, 2002, 41, 6042-6048.	1.8	48
270	CO2 and steam gasification of a grapefruit skin char. Fuel, 2002, 81, 423-429.	3.4	136

#	Article	IF	Citations
271	Reuse of reverse osmosis membranes in advanced wastewater treatment. Desalination, 2002, 150, 219-225.	4.0	52
272	POWDERED ACTIVATED CARBONS FROM PINUS CARIBAEA SAWDUST. Separation Science and Technology, 2001, 36, 3191-3206.	1.3	31
273	Characterization and structural modification of ammonic lignosulfonate by methylolation. Journal of Applied Polymer Science, 2001, 82, 2661-2668.	1.3	102
274	Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel, 2001, 80, 1567-1571.	3.4	252
275	Structural and Textural Properties of Pyrolytic Carbon Formed within a Microporous Zeolite Template. Chemistry of Materials, 1998, 10, 550-558.	3.2	144
276	Activated Carbons from Eucalyptus Wood. Influence of the Carbonization Temperature. Separation Science and Technology, 1997, 32, 1115-1126.	1.3	18
277	Development of Porosity upon Chemical Activation of Kraft Lignin with ZnCl2. Industrial & Development of Porosity upon Chemical Activation of Kraft Lignin with ZnCl2. Industrial & Development of Porosity upon Chemical Activation of Kraft Lignin with ZnCl2. Industrial & Development of Porosity upon Chemical Activation of Kraft Lignin with ZnCl2. Industrial & Development of Porosity upon Chemical Activation of Kraft Lignin with ZnCl2. Industrial & Development of Porosity upon Chemical Activation of Kraft Lignin with ZnCl2. Industrial & Development of Porosity upon Chemical Activation of Kraft Lignin with ZnCl2. Industrial & Development of Porosity upon Chemical Activation of Kraft Lignin with ZnCl2. Industrial & Development of Porosity upon Chemical Activation of Kraft Lignin with ZnCl2. Industrial & Development of Porosity upon Chemical Activation of Kraft Lignin with ZnCl2. Industrial & Development of Porosity upon Chemical Activation of Porosity upon Chemica	1.8	126
278	High-temperature carbons from kraft lignin. Carbon, 1996, 34, 43-52.	5 . 4	86
279	CO2 gasification of eucalyptus wood chars. Fuel, 1996, 75, 1505-1508.	3.4	63
280	Activated carbons from Uruguayan eucalyptus wood. Fuel, 1996, 75, 1701-1706.	3.4	64
281	Biodegradation Phenomena during Soil Vapor Extraction: Sensitivity Studies for Single Substrate Systems. Separation Science and Technology, 1994, 29, 557-578.	1.3	3
282	Biodegradation Phenomena during Soil Vapor Extraction. III. Sensitivity Studies for Two Substrates. Separation Science and Technology, 1994, 29, 1275-1291.	1.3	4
283	Preparation and characterization of activated carbons from eucalyptus kraft lignin. Carbon, 1993, 31, 87-95.	5.4	119
284	CO2-reactivity of eucalyptus kraft lignin chars. Carbon, 1993, 31, 53-61.	5.4	38
285	Cobalt(II) removal from water by chemical reduction with sodium borohydride. Water Research, 1993, 27, 985-992.	5.3	38
286	Activated carbons from carbon dioxide partial gasification of eucalyptus kraft lignin. Energy & mp; Fuels, 1993, 7, 133-138.	2.5	96
287	Adsorption of Anionic Surfactant Mixtures by Polymeric Resins. Separation Science and Technology, 1992, 27, 1065-1076.	1.3	21
288	Copper Removal from Water by Chemical Reduction with Sodium Borohydride. Separation Science and Technology, 1992, 27, 1449-1468.	1.3	14

#	Article	IF	CITATIONS
289	Equilibrium Study of Single-Solute Adsorption of Anionic Surfactants with Polymeric XAD Resins. Separation Science and Technology, 1992, 27, 975-987.	1.3	127
290	Heavy Metal Removal by Chemical Reduction with Sodium Borohydride. A Pilot-Plant Study. Separation Science and Technology, 1992, 27, 1569-1582.	1.3	10
291	Thermal decomposition of wood in oxidizing atmosphere. A kinetic study from non-isothermal TG experiments. Thermochimica Acta, 1991, 191, 161-178.	1.2	34
292	On the kinetics of thermal decomposition of wood and wood components. Thermochimica Acta, 1990, 164, 135-144.	1.2	88
293	A kinetic study on chemical activation of holm oak wood. Journal of Analytical and Applied Pyrolysis, 1990, 18, 117-126.	2.6	7
294	A kinetic study of holm oak wood pyrolysis from dynamic and isothermal TG experiments. Thermochimica Acta, 1989, 149, 225-237.	1.2	26
295	Kraft Wastewater Cleaning with Polymeric Adsorbents. Separation Science and Technology, 1985, 20, 481-487.	1.3	4
296	Copper (2+), Zinc (2+), and Nickel (2+) Uptake by Activated Sludge. Separation Science and Technology, 1985, 20, 587-597.	1.3	2
297	Sedimentation and Filtration of Zinc Oxi-hydroxychloride Suspensions. Separation Science and Technology, 1983, 18, 1045-1063.	1.3	2
298	The Removal of Mixtures of Metals by an Adsorbing Colloid Foam Flotation Pilot Plant. Separation Science and Technology, 1982, 17, 683-693.	1.3	16
299	Copper Removal by an Adsorbing Colloid Foam Flotation Pilot Plant. Separation Science and Technology, 1982, 17, 359-367.	1.3	19
300	Removal of Zinc by Adsorbing Colloid Foam Flotation: Pilot Plant Study. Separation Science and Technology, 1982, 17, 673-682.	1.3	9