
Juan J Rodriguez Jimenez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4070323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review. Applied Catalysis B: Environmental, 2015, 176-177, 249-265.	10.8	593
2	An overview of the application of Fenton oxidation to industrial wastewaters treatment. Journal of Chemical Technology and Biotechnology, 2008, 83, 1323-1338.	1.6	546
3	Chemical Pathway and Kinetics of Phenol Oxidation by Fenton's Reagent. Environmental Science & Technology, 2005, 39, 9295-9302.	4.6	545
4	Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Applied Catalysis B: Environmental, 2006, 65, 261-268.	10.8	290
5	Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel, 2001, 80, 1567-1571.	3.4	252
6	Application of Fenton oxidation to cosmetic wastewaters treatment. Journal of Hazardous Materials, 2007, 143, 128-134.	6.5	233
7	A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification. Catalysts, 2019, 9, 52.	1.6	215
8	Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors. Water Research, 2004, 38, 3043-3050.	5.3	212
9	Trends in the Intensification of the Fenton Process for Wastewater Treatment: An Overview. Critical Reviews in Environmental Science and Technology, 2015, 45, 2611-2692.	6.6	191
10	Intensification of the Fenton Process by Increasing the Temperature. Industrial & Engineering Chemistry Research, 2011, 50, 866-870.	1.8	173
11	Activated carbon from grape seeds upon chemical activation with phosphoric acid: Application to the adsorption of diuron from water. Chemical Engineering Journal, 2012, 203, 348-356.	6.6	160
12	Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: Influence of iron precursor and activated carbon surface. Applied Catalysis B: Environmental, 2009, 86, 69-77.	10.8	149
13	Evolution of Toxicity upon Wet Catalytic Oxidation of Phenol. Environmental Science & Technology, 2004, 38, 133-138.	4.6	148
14	Structural and Textural Properties of Pyrolytic Carbon Formed within a Microporous Zeolite Template. Chemistry of Materials, 1998, 10, 550-558.	3.2	144
15	Task-specific ionic liquids for efficient ammonia absorption. Separation and Purification Technology, 2011, 82, 43-52.	3.9	140
16	Adsorption of ionic liquids from aqueous effluents by activated carbon. Carbon, 2009, 47, 1846-1856.	5.4	138
17	Modification of ammonium lignosulfonate by phenolation for use in phenolic resins. Bioresource Technology, 2005, 96, 1013-1018.	4.8	137
18	Mixed Ti-Zr metal-organic-frameworks for the photodegradation of acetaminophen under solar irradiation. Applied Catalysis B: Environmental, 2019, 253, 253-262.	10.8	137

#	Article	IF	CITATIONS
19	CO2 and steam gasification of a grapefruit skin char. Fuel, 2002, 81, 423-429.	3.4	136
20	Degradation of emerging pollutants in water under solar irradiation using novel TiO 2 -ZnO/clay nanoarchitectures. Chemical Engineering Journal, 2017, 309, 596-606.	6.6	134
21	Characterization of Supported Ionic Liquid Phase (SILP) materials prepared from different supports. Adsorption, 2011, 17, 561-571.	1.4	132
22	Equilibrium Study of Single-Solute Adsorption of Anionic Surfactants with Polymeric XAD Resins. Separation Science and Technology, 1992, 27, 975-987.	1.3	127
23	Development of Porosity upon Chemical Activation of Kraft Lignin with ZnCl2. Industrial & Engineering Chemistry Research, 1997, 36, 4832-4838.	1.8	126
24	Activated carbons from sewage sludge. Desalination, 2011, 277, 377-382.	4.0	124
25	Influence of the structural and surface characteristics of activated carbon on the catalytic decomposition of hydrogen peroxide. Applied Catalysis A: General, 2011, 402, 146-155.	2.2	122
26	Preparation and characterization of activated carbons from eucalyptus kraft lignin. Carbon, 1993, 31, 87-95.	5.4	119
27	Evolution of Ecotoxicity upon Fenton's Oxidation of Phenol in Water. Environmental Science & Technology, 2007, 41, 7164-7170.	4.6	118
28	Kinetics of the Hydrodechlorination of 4-Chlorophenol in Water Using Pd, Pt, and Rh/Al ₂ O ₃ Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 3840-3846.	1.8	113
29	Aqueous-phase hydrodechlorination of chlorophenols with pillared clays-supported Pt, Pd and Rh catalysts. Applied Catalysis B: Environmental, 2014, 148-149, 330-338.	10.8	110
30	Assessment of the generation of chlorinated byproducts upon Fenton-like oxidation of chlorophenols at different conditions. Journal of Hazardous Materials, 2011, 190, 993-1000.	6.5	109
31	Catalytic behavior of size-controlled palladium nanoparticles in the hydrodechlorination of 4-chlorophenol in aqueous phase. Journal of Catalysis, 2012, 293, 85-93.	3.1	107
32	Hydrodechlorination of 4-chlorophenol in aqueous phase using Pd/AC catalysts prepared with modified active carbon supports. Applied Catalysis B: Environmental, 2006, 67, 68-76.	10.8	105
33	Characterization and structural modification of ammonic lignosulfonate by methylolation. Journal of Applied Polymer Science, 2001, 82, 2661-2668.	1.3	102
34	A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation. Chemical Engineering Journal, 2006, 118, 29-35.	6.6	101
35	Removal of chlorinated organic volatile compounds by gas phase adsorption with activated carbon. Chemical Engineering Journal, 2012, 211-212, 246-254.	6.6	99
36	Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants. Journal of Hazardous Materials, 2017, 322, 233-242.	6.5	97

Juan J Rodriguez Jimenez

#	Article	IF	CITATIONS
37	Activated carbons from carbon dioxide partial gasification of eucalyptus kraft lignin. Energy & Fuels, 1993, 7, 133-138.	2.5	96
38	Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts. Chemical Engineering Journal, 2007, 131, 65-71.	6.6	95
39	Adsorption of antipyrine by activated carbons from FeCl3-activation of Tara gum. Chemical Engineering Journal, 2018, 333, 58-65.	6.6	92
40	Highly efficient application of activated carbon as catalyst for wet peroxide oxidation. Applied Catalysis B: Environmental, 2013, 140-141, 663-670.	10.8	91
41	Optimized ionic liquids for toluene absorption. AICHE Journal, 2013, 59, 1648-1656.	1.8	90
42	Compared activity and stability of Pd/Al2O3 and Pd/AC catalysts in 4-chlorophenol hydrodechlorination in different pH media. Applied Catalysis B: Environmental, 2011, 103, 128-135.	10.8	89
43	On the kinetics of thermal decomposition of wood and wood components. Thermochimica Acta, 1990, 164, 135-144.	1.2	88
44	High-temperature carbons from kraft lignin. Carbon, 1996, 34, 43-52.	5.4	86
45	Review on Activated Carbons by Chemical Activation with FeCl3. Journal of Carbon Research, 2020, 6, 21.	1.4	86
46	Cometabolic biodegradation of 4-chlorophenol by sequencing batch reactors at different temperatures. Bioresource Technology, 2009, 100, 4572-4578.	4.8	83
47	Developing criteria for the recovery of ionic liquids from aqueous phase by adsorption with activated carbon. Separation and Purification Technology, 2012, 97, 11-19.	3.9	82
48	Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions. Chemical Engineering Journal, 2012, 184, 176-183.	6.6	82
49	C-modified TiO2 using lignin as carbon precursor for the solar photocatalytic degradation of acetaminophen. Chemical Engineering Journal, 2019, 358, 1574-1582.	6.6	82
50	Catalytic wet peroxide oxidation of cosmetic wastewaters with Fe-bearing catalysts. Catalysis Today, 2010, 151, 148-152.	2.2	81
51	Comparison of activated carbon-supported Pd and Rh catalysts for aqueous-phase hydrodechlorination. Applied Catalysis B: Environmental, 2011, 106, 469-475.	10.8	81
52	A Review on the Synthesis and Characterization of Biomass-Derived Carbons for Adsorption of Emerging Contaminants from Water. Journal of Carbon Research, 2018, 4, 63.	1.4	80
53	Titania–clay heterostructures with solar photocatalytic applications. Applied Catalysis B: Environmental, 2015, 176-177, 278-287.	10.8	78
54	A ferromagnetic Î ³ -alumina-supported iron catalyst for CWPO. Application to chlorophenols. Applied Catalysis B: Environmental, 2013, 136-137, 218-224.	10.8	77

#	Article	IF	CITATIONS
55	Highly stable Fe on activated carbon catalysts for CWPO upon FeCl3 activation of lignin from black liquors. Catalysis Today, 2012, 187, 115-121.	2.2	76
56	Enhancement of cometabolic biodegradation of 4-chlorophenol induced with phenol and glucose as carbon sources by Comamonas testosteroni. Journal of Environmental Management, 2012, 95, S116-S121.	3.8	75
57	Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study. Water Research, 2009, 43, 4063-4069.	5.3	74
58	Screening ionic liquids as suitable ammonia absorbents on the basis of thermodynamic and kinetic analysis. Separation and Purification Technology, 2012, 95, 188-195.	3.9	73
59	Innovative W-doped titanium dioxide anchored on clay for photocatalytic removal of atrazine. Catalysis Today, 2017, 280, 21-28.	2.2	73
60	Cation and anion effect on the biodegradability and toxicity of imidazolium– and choline–based ionic liquids. Chemosphere, 2020, 240, 124947.	4.2	73
61	Iron catalysts by chemical activation of sewage sludge with FeCl 3 for CWPO. Chemical Engineering Journal, 2017, 318, 224-230.	6.6	72
62	Mesophilic anaerobic co-digestion of the organic fraction of municipal solid waste with the liquid fraction from hydrothermal carbonization of sewage sludge. Waste Management, 2018, 76, 315-322.	3.7	72
63	Activated carbon supported metal catalysts for reduction of nitrate in water with high selectivity towards N2. Applied Catalysis B: Environmental, 2013, 138-139, 141-148.	10.8	69
64	Solar photocatalytic purification of water with Ce-doped TiO2/clay heterostructures. Catalysis Today, 2016, 266, 36-45.	2.2	69
65	Effect of inoculum source and initial concentration on the anaerobic digestion of the liquid fraction from hydrothermal carbonisation of sewage sludge. Renewable Energy, 2018, 127, 697-704.	4.3	69
66	Interactions of Ionic Liquids and Acetone: Thermodynamic Properties, Quantum-Chemical Calculations, and NMR Analysis. Journal of Physical Chemistry B, 2013, 117, 7388-7398.	1.2	68
67	Semiconductor Photocatalysis for Water Purification. , 2019, , 581-651.		68
68	Catalytic wet air oxidation of phenol with modified activated carbons and Fe/activated carbon catalysts. Applied Catalysis B: Environmental, 2007, 76, 135-145.	10.8	67
69	Computational Approach to Nuclear Magnetic Resonance in 1-Alkyl-3-methylimidazolium Ionic Liquids. Journal of Physical Chemistry B, 2007, 111, 168-180.	1.2	66
70	Optimizing calcination temperature of Fe/activated carbon catalysts for CWPO. Catalysis Today, 2009, 143, 341-346.	2.2	66
71	Valorization of microalgal biomass by hydrothermal carbonization and anaerobic digestion. Bioresource Technology, 2019, 274, 395-402.	4.8	66
72	Effects of Support Surface Composition on the Activity and Selectivity of Pd/C Catalysts in Aqueous-Phase Hydrodechlorination Reactions. Industrial & Engineering Chemistry Research, 2005, 44, 6661-6667.	1.8	65

#	Article	IF	CITATIONS
73	Treatment of Highly Polluted Hazardous Industrial Wastewaters by Combined Coagulation–Adsorption and High-Temperature Fenton Oxidation. Industrial & Engineering Chemistry Research, 2012, 51, 2888-2896.	1.8	65
74	Activated carbons from Uruguayan eucalyptus wood. Fuel, 1996, 75, 1701-1706.	3.4	64
75	Kinetics of 4-Chlorophenol Hydrodechlorination with Alumina and Activated Carbon-Supported Pd and Rh Catalysts. Industrial & Engineering Chemistry Research, 2009, 48, 3351-3358.	1.8	64
76	Triclosan breakdown by Fenton-like oxidation. Chemical Engineering Journal, 2012, 198-199, 275-281.	6.6	64
77	Ionic liquids breakdown by Fenton oxidation. Catalysis Today, 2015, 240, 16-21.	2.2	64
78	Application of CWPO to the treatment of pharmaceutical emerging pollutants in different water matrices with a ferromagnetic catalyst. Journal of Hazardous Materials, 2017, 331, 45-54.	6.5	64
79	CO2 gasification of eucalyptus wood chars. Fuel, 1996, 75, 1505-1508.	3.4	63
80	Highly stable Fe(γâ€Al ₂ O ₃ catalyst for catalytic wet peroxide oxidation. Journal of Chemical Technology and Biotechnology, 2011, 86, 497-504.	1.6	63
81	Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst. Applied Catalysis B: Environmental, 2006, 62, 115-120.	10.8	62
82	Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst. Applied Catalysis B: Environmental, 2006, 67, 206-216.	10.8	62
83	Hydrodechlorination of chloromethanes with a highly stable Pt on activated carbon catalyst. Journal of Catalysis, 2011, 279, 389-396.	3.1	62
84	Influence of Water Vapor on the Adsorption of VOCs on Ligninâ€Based Activated Carbons. Separation Science and Technology, 2005, 40, 3113-3135.	1.3	61
85	Role of the Activated Carbon Surface on Catalytic Wet Peroxide Oxidation. Industrial & Engineering Chemistry Research, 2008, 47, 8166-8174.	1.8	61
86	Naturally-occurring iron minerals as inexpensive catalysts for CWPO. Applied Catalysis B: Environmental, 2017, 203, 166-173.	10.8	61
87	Application of Fenton-like oxidation as pre-treatment for carbamazepine biodegradation. Chemical Engineering Journal, 2015, 264, 856-862.	6.6	60
88	Comparison of different precious metals in activated carbon-supported catalysts for the gas-phase hydrodechlorination of chloromethanes. Applied Catalysis B: Environmental, 2013, 132-133, 256-265.	10.8	59
89	Valorisation of the liquid fraction from hydrothermal carbonisation of sewage sludge by anaerobic digestion. Journal of Chemical Technology and Biotechnology, 2018, 93, 450-456.	1.6	59
90	Comparison of UASB and EGSB performance on the anaerobic biodegradation of 2,4-dichlorophenol. Chemosphere, 2009, 76, 1192-1198.	4.2	58

#	Article	IF	CITATIONS
91	Adsorption of 4-chlorophenol by inexpensive sewage sludge-based adsorbents. Chemical Engineering Research and Design, 2012, 90, 1807-1814.	2.7	58
92	Solar photocatalytic degradation of parabens using UiO-66-NH2. Separation and Purification Technology, 2022, 286, 120467.	3.9	58
93	Application of intensified Fenton oxidation to the treatment of sawmill wastewater. Chemosphere, 2014, 109, 34-41.	4.2	57
94	Hydrogen peroxide-promoted-CWAO of phenol with activated carbon. Applied Catalysis B: Environmental, 2010, 93, 339-345.	10.8	56
95	Supported gold nanoparticle catalysts for wet peroxide oxidation. Applied Catalysis B: Environmental, 2012, 111-112, 81-89.	10.8	56
96	Microwave-assisted synthesis of NH2-MIL-125(Ti) for the solar photocatalytic degradation of aqueous emerging pollutants in batch and continuous tests. Journal of Environmental Chemical Engineering, 2021, 9, 106230.	3.3	56
97	Effect of size and oxidation state of size-controlled rhodium nanoparticles on the aqueous-phase hydrodechlorination of 4-chlorophenol. Chemical Engineering Journal, 2014, 240, 271-280.	6.6	55
98	Graphite and carbon black materials as catalysts for wet peroxide oxidation. Applied Catalysis B: Environmental, 2014, 144, 599-606.	10.8	54
99	Improved solid fuels from co-pyrolysis of a high-sulphur content coal and different lignocellulosic wastes. Fuel, 2004, 83, 1585-1590.	3.4	53
100	Lignin-based activated carbons for adsorption of sodium dodecylbenzene sulfonate: Equilibrium and kinetic studies. Journal of Colloid and Interface Science, 2009, 332, 39-45.	5.0	53
101	Hydrodechlorination of dichloromethane with a Pd/AC catalyst: Reaction pathway and kinetics. Applied Catalysis B: Environmental, 2010, 98, 79-85.	10.8	53
102	Degradation of chlorophenoxy herbicides by coupled Fenton and biological oxidation. Chemosphere, 2013, 93, 115-122.	4.2	53
103	Degradation of imidazoliumâ€based ionic liquids in aqueous solution by Fenton oxidation. Journal of Chemical Technology and Biotechnology, 2014, 89, 1197-1202.	1.6	53
104	On the optimization of activated carbon-supported iron catalysts in catalytic wet peroxide oxidation process. Applied Catalysis B: Environmental, 2016, 181, 249-259.	10.8	53
105	Integration of Hydrothermal Carbonization and Anaerobic Digestion for Energy Recovery of Biomass Waste: An Overview. Energy & Fuels, 2021, 35, 17032-17050.	2.5	53
106	Reuse of reverse osmosis membranes in advanced wastewater treatment. Desalination, 2002, 150, 219-225.	4.0	52
107	Hydrodechlorination of 4-chlorophenol in water with formic acid using a Pd/activated carbon catalyst. Journal of Hazardous Materials, 2009, 161, 842-847.	6.5	52
108	Pd–Al pillared clays as catalysts for the hydrodechlorination of 4-chlorophenol in aqueous phase. Journal of Hazardous Materials, 2009, 172, 214-223.	6.5	51

#	Article	IF	CITATIONS
109	Denitrification of Water with Activated Carbon-Supported Metallic Catalysts. Industrial & Engineering Chemistry Research, 2010, 49, 5603-5609.	1.8	51
110	Encapsulated Ionic Liquids for CO ₂ Capture: Using 1â€Butylâ€methylimidazolium Acetate for Quick and Reversible CO ₂ Chemical Absorption ChemPhysChem, 2016, 17, 3891-3899.	1.0	51
111	Effect of Activating Agent on the Properties of TiO2/Activated Carbon Heterostructures for Solar Photocatalytic Degradation of Acetaminophen. Materials, 2019, 12, 378.	1.3	51
112	Porous structure and morphology of granular chars from flash and conventional pyrolysis of grape seeds. Biomass and Bioenergy, 2013, 54, 123-132.	2.9	50
113	Comparison of experimental methods for determination of toxicity and biodegradability of xenobiotic compounds. Biodegradation, 2011, 22, 751-761.	1.5	49
114	Encapsulated ionic liquids (ENILs): from continuous to discrete liquid phase. Chemical Communications, 2012, 48, 10046.	2.2	49
115	Influence of Surface Composition and Pore Structure on Cr(III) Adsorption onto Activated Carbons. Industrial & Engineering Chemistry Research, 2002, 41, 6042-6048.	1.8	48
116	Hydrodechlorination of chloromethanes with Pd on activated carbon catalysts for the treatment of residual gas streams. Applied Catalysis B: Environmental, 2010, 96, 148-156.	10.8	48
117	Mineralization of naphtenic acids with thermally-activated persulfate: The important role of oxygen. Journal of Hazardous Materials, 2016, 318, 355-362.	6.5	48
118	Anaerobic co-digestion of the aqueous phase from hydrothermally treated waste activated sludge with primary sewage sludge. A kinetic study. Journal of Environmental Management, 2019, 231, 726-733.	3.8	48
119	Microwave-assisted catalytic wet peroxide oxidation. Comparison of Fe catalysts supported on activated carbon and ?-alumina. Applied Catalysis B: Environmental, 2017, 218, 637-642.	10.8	47
120	Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor. Journal of Hazardous Materials, 2011, 185, 1059-1065.	6.5	46
121	Colloidal templating synthesis and adsorption characteristics of microporous–mesoporous carbons from Kraft lignin. Carbon, 2013, 62, 233-239.	5.4	46
122	From kinetics to equilibrium control in CO2 capture columns using Encapsulated Ionic Liquids (ENILs). Chemical Engineering Journal, 2018, 348, 661-668.	6.6	46
123	Hydrodechlorination of alachlor in water using Pd, Ni and Cu catalysts supported on activated carbon. Applied Catalysis B: Environmental, 2008, 78, 259-266.	10.8	45
124	Chlorophenols breakdown by a sequential hydrodechlorination-oxidation treatment with a magnetic Pd–Fe/γ-Al2O3 catalyst. Water Research, 2013, 47, 3070-3080.	5.3	45
125	Treatment of real winery wastewater by wet oxidation at mild temperature. Separation and Purification Technology, 2014, 129, 121-128.	3.9	45
126	Application of intensified Fenton oxidation to the treatment of hospital wastewater: Kinetics, ecotoxicity and disinfection. Journal of Environmental Chemical Engineering, 2016, 4, 4107-4112.	3.3	45

#	Article	IF	CITATIONS
127	Ammonia capture from the gas phase by encapsulated ionic liquids (ENILs). RSC Advances, 2016, 6, 61650-61660.	1.7	45
128	Anaerobic co-digestion of the process water from waste activated sludge hydrothermally treated with primary sewage sludge. A new approach for sewage sludge management. Renewable Energy, 2020, 146, 435-443.	4.3	45
129	Equilibrium and Kinetic Study of Congo Red Adsorption onto Lignin-Based Activated Carbons. Transport in Porous Media, 2010, 83, 573-590.	1.2	44
130	The use of cyclic voltammetry to assess the activity of carbon materials for hydrogen peroxide decomposition. Carbon, 2013, 60, 76-83.	5.4	43
131	Coupling Fenton and biological oxidation for the removal of nitrochlorinated herbicides from water. Water Research, 2014, 49, 197-206.	5.3	43
132	Ozone as oxidation agent in cyclic activation of biochar. Fuel Processing Technology, 2015, 139, 42-48.	3.7	43
133	A review on alkaline earth metal titanates for applications in photocatalytic water purification. Chemical Engineering Journal, 2021, 409, 128110.	6.6	42
134	Surface modification of carbon-supported iron catalyst during the wet air oxidation of phenol: Influence on activity, selectivity and stability. Applied Catalysis B: Environmental, 2008, 81, 105-114.	10.8	41
135	Density Functional Theory Analysis of Dichloromethane and Hydrogen Interaction with Pd Clusters: First Step to Simulate Catalytic Hydrodechlorination. Journal of Physical Chemistry C, 2011, 115, 14180-14192.	1.5	41
136	Case study of the application of Fenton process to highly polluted wastewater from power plant. Journal of Hazardous Materials, 2013, 252-253, 180-185.	6.5	40
137	Deactivation behavior of Pd/C and Pt/C catalysts in the gas-phase hydrodechlorination of chloromethanes: Structure–reactivity relationship. Applied Catalysis B: Environmental, 2015, 162, 532-543.	10.8	40
138	Gas-phase hydrodechlorination of dichloromethane with activated carbon-supported metallic catalysts. Chemical Engineering Journal, 2010, 162, 599-608.	6.6	39
139	Ag-Coated Heterostructures of ZnO-TiO2/Delaminated Montmorillonite as Solar Photocatalysts. Materials, 2017, 10, 960.	1.3	39
140	Production of hydrogen from brewery wastewater by aqueous phase reforming with Pt/C catalysts. Applied Catalysis B: Environmental, 2019, 245, 367-375.	10.8	39
141	CO2-reactivity of eucalyptus kraft lignin chars. Carbon, 1993, 31, 53-61.	5.4	38
142	Cobalt(II) removal from water by chemical reduction with sodium borohydride. Water Research, 1993, 27, 985-992.	5.3	38
143	Gas-Phase Hydrodechlorination of Dichloromethane at Low Concentrations with Palladium/Carbon Catalysts. Industrial & Engineering Chemistry Research, 2006, 45, 7760-7766.	1.8	38
144	Enhanced activity of carbon-supported Pd–Pt catalysts in the hydrodechlorination of dichloromethane. Applied Catalysis B: Environmental, 2016, 184, 55-63.	10.8	38

#	Article	IF	CITATIONS
145	TiO2-carbon microspheres as photocatalysts for effective remediation of pharmaceuticals under simulated solar light. Separation and Purification Technology, 2021, 275, 119169.	3.9	38
146	Improved mineralization by combined advanced oxidation processes. Chemical Engineering Journal, 2011, 174, 134-142.	6.6	37
147	Synthesis, characterization and application of nanoscale zero-valent iron in the degradation of the azo dye Disperse Red 1. Journal of Environmental Chemical Engineering, 2017, 5, 628-634.	3.3	37
148	Phenol oxidation by a sequential CWPO–CWAO treatment with a Fe/AC catalyst. Journal of Hazardous Materials, 2007, 146, 582-588.	6.5	36
149	Chlorinated Byproducts from the Fenton-like Oxidation of Polychlorinated Phenols. Industrial & Engineering Chemistry Research, 2012, 51, 13092-13099.	1.8	36
150	Catalytic HDC/HDN of 4-chloronitrobenzene in water under ambient-like conditions with Pd supported on pillared clay. Applied Catalysis B: Environmental, 2014, 158-159, 175-181.	10.8	36
151	UV-LED assisted catalytic wet peroxide oxidation with a Fe(II)-Fe(III)/activated carbon catalyst. Applied Catalysis B: Environmental, 2016, 192, 350-356.	10.8	36
152	Hydrodechlorination of 4-chlorophenol in water using Rh–Al pillared clays. Chemical Engineering Journal, 2010, 160, 578-585.	6.6	35
153	Hydrodechlorination of dichloromethane with mono- and bimetallic Pd–Pt on sulfated and tungstated zirconia catalysts. Journal of Catalysis, 2012, 294, 207-215.	3.1	35
154	Improved Î ³ -alumina-supported Pd and Rh catalysts for hydrodechlorination of chlorophenols. Applied Catalysis A: General, 2014, 488, 78-85.	2.2	35
155	Assessment of toxicity and biodegradability on activated sludge of priority and emerging pollutants. Environmental Technology (United Kingdom), 2016, 37, 713-721.	1.2	35
156	Thermal decomposition of wood in oxidizing atmosphere. A kinetic study from non-isothermal TG experiments. Thermochimica Acta, 1991, 191, 161-178.	1.2	34
157	Adsorption of Aromatic Compounds on Activated Carbons from Lignin:Â Equilibrium and Thermodynamic Study. Industrial & Engineering Chemistry Research, 2007, 46, 4982-4990.	1.8	34
158	Kinetics of wet peroxide oxidation of phenol with a gold/activated carbon catalyst. Chemical Engineering Journal, 2014, 253, 486-492.	6.6	34
159	Adsorption of Aromatic Compounds on Activated Carbons from Lignin:  Kinetic Study. Industrial & Engineering Chemistry Research, 2007, 46, 2853-2860.	1.8	33
160	Removal of imidazolium- and pyridinium-based ionic liquids by Fenton oxidation. Environmental Science and Pollution Research, 2018, 25, 34930-34937.	2.7	33
161	Low-Cost Activated Grape Seed-Derived Hydrochar through Hydrothermal Carbonization and Chemical Activation for Sulfamethoxazole Adsorption. Applied Sciences (Switzerland), 2019, 9, 5127.	1.3	33
162	On the Kinetics of Ionic Liquid Adsorption onto Activated Carbons from Aqueous Solution. Industrial & Engineering Chemistry Research, 2013, 52, 2969-2976.	1.8	32

#	Article	IF	CITATIONS
163	Platinum and N-doped carbon nanostructures as catalysts in hydrodechlorination reactions. Applied Catalysis B: Environmental, 2018, 238, 609-617.	10.8	32
164	Highly stable UiO-66-NH2 by the microwave-assisted synthesis for solar photocatalytic water treatment. Journal of Environmental Chemical Engineering, 2022, 10, 107122.	3.3	32
165	POWDERED ACTIVATED CARBONS FROM PINUS CARIBAEA SAWDUST. Separation Science and Technology, 2001, 36, 3191-3206.	1.3	31
166	Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: general framework. Hydrological Sciences Journal, 2010, 55, 1217-1233.	1.2	31
167	Analysis of the deactivation of Pd, Pt and Rh on activated carbon catalysts in the hydrodechlorination of the MCPA herbicide. Applied Catalysis B: Environmental, 2016, 181, 429-435.	10.8	31
168	Polymer-based spherical activated carbon as catalytic support for hydrodechlorination reactions. Applied Catalysis B: Environmental, 2017, 218, 498-505.	10.8	31
169	Cyclohexanoic acid breakdown by two-step persulfate and heterogeneous Fenton-like oxidation. Applied Catalysis B: Environmental, 2018, 232, 429-435.	10.8	31
170	Assessment the ecotoxicity and inhibition of imidazolium ionic liquids by respiration inhibition assays. Ecotoxicology and Environmental Safety, 2018, 162, 29-34.	2.9	31
171	Deactivation of a Pd/AC catalyst in the hydrodechlorination of chlorinated herbicides. Catalysis Today, 2015, 241, 86-91.	2.2	30
172	Enhanced anaerobic degradability of highly polluted pesticides-bearing wastewater under thermophilic conditions. Journal of Hazardous Materials, 2017, 339, 320-329.	6.5	30
173	Thermal Post-Treatments to Enhance the Water Stability of NH2-MIL-125(Ti). Catalysts, 2020, 10, 603.	1.6	30
174	Ligninâ€based activated carbons as adsorbents for crystal violet removal from aqueous solutions. Environmental Progress and Sustainable Energy, 2012, 31, 386-396.	1.3	29
175	Activity enhancement and selectivity tuneability in aqueous phase hydrodechlorination by use of controlled growth Pd-Rh nanoparticles. Applied Catalysis B: Environmental, 2015, 168-169, 283-292.	10.8	29
176	Improved synthesis and hydrothermal stability of Pt/C catalysts based on size-controlled nanoparticles. Catalysis Science and Technology, 2016, 6, 5196-5206.	2.1	29
177	Removal of emerging pollutants in aqueous phase by heterogeneous Fenton and photo-Fenton with Fe2O3-TiO2-clay heterostructures. Environmental Science and Pollution Research, 2020, 27, 38434-38445.	2.7	29
178	Strategies to evaluate biodegradability: application to chlorinated herbicides. Environmental Science and Pollution Research, 2014, 21, 9445-9452.	2.7	28
179	Removal of imidazolium-based ionic liquid by coupling Fenton and biological oxidation. Journal of Hazardous Materials, 2019, 365, 289-296.	6.5	28
180	Mechanistic understanding of the behavior of diuron in the adsorption from water onto activated carbon. Chemical Engineering Journal, 2012, 198-199, 346-354.	6.6	27

#	Article	IF	CITATIONS
181	Inhibition of methanogenesis by chlorophenols: a kinetic approach. New Biotechnology, 2012, 30, 51-61.	2.4	27
182	Catalysts based on large size-controlled Pd nanoparticles for aqueous-phase hydrodechlorination. Chemical Engineering Journal, 2016, 294, 40-48.	6.6	27
183	An overview on the application of advanced oxidation processes for the removal of naphthenic acids from water. Critical Reviews in Environmental Science and Technology, 2017, 47, 1337-1370.	6.6	27
184	A kinetic study of holm oak wood pyrolysis from dynamic and isothermal TG experiments. Thermochimica Acta, 1989, 149, 225-237.	1.2	26
185	Effect of 2,4,6-trichlorophenol on the microbial activity of adapted anaerobic granular sludge bioaugmented with Desulfitobacterium strains. New Biotechnology, 2011, 29, 79-89.	2.4	26
186	Gas-phase hydrodechlorination of mixtures of chloromethanes with activated carbon-supported platinum catalysts. Applied Catalysis B: Environmental, 2015, 179, 551-557.	10.8	26
187	Fixed-bed adsorption of ionic liquids onto activated carbon from aqueous phase. Journal of Environmental Chemical Engineering, 2017, 5, 5347-5351.	3.3	26
188	Hydrodechlorination of 4-chlorophenol in aqueous phase with Pt–Al pillared clays using formic acid as hydrogen source. Applied Clay Science, 2009, 45, 206-212.	2.6	25
189	Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: application to the Akrotiri basin and aquifer, Cyprus. Hydrological Sciences Journal, 2010, 55, 1234-1245.	1.2	25
190	Improved wet peroxide oxidation strategies for the treatment of chlorophenols. Chemical Engineering Journal, 2013, 228, 646-654.	6.6	25
191	Activation of waste tire char by cyclic liquid-phase oxidation. Fuel Processing Technology, 2014, 127, 157-162.	3.7	25
192	Comparison of bioaugmented EGSB and GAC–FBB reactors and their combination with aerobic SBR for the abatement of chlorophenols. Chemical Engineering Journal, 2015, 259, 277-285.	6.6	25
193	CWPO of bisphenol A with iron catalysts supported on microporous carbons from grape seeds activation. Chemical Engineering Journal, 2017, 318, 153-160.	6.6	25
194	Effect of the Pt–Pd molar ratio in bimetallic catalysts supported on sulfated zirconia on the gas-phase hydrodechlorination of chloromethanes. Journal of Catalysis, 2017, 352, 562-571.	3.1	25
195	Toxicity and inhibition assessment of ionic liquids by activated sludge. Ecotoxicology and Environmental Safety, 2020, 187, 109836.	2.9	25
196	Hydrodechlorination of diuron in aqueous solution with Pd, Cu and Ni on activated carbon catalysts. Chemical Engineering Journal, 2010, 163, 212-218.	6.6	24
197	Low-temperature anaerobic treatment of low-strength pentachlorophenol-bearing wastewater. Bioresource Technology, 2013, 140, 349-356.	4.8	24
198	Intensification of catalytic wet peroxide oxidation with microwave radiation: Activity and stability of carbon materials. Separation and Purification Technology, 2019, 209, 301-306.	3.9	24

#	Article	IF	CITATIONS
199	CO ₂ Capture by Supported Ionic Liquid Phase: Highlighting the Role of the Particle Size. ACS Sustainable Chemistry and Engineering, 2019, 7, 13089-13097.	3.2	24
200	Reaction pathways of heat-activated persulfate oxidation of naphthenic acids in the presence and absence of dissolved oxygen in water. Chemical Engineering Journal, 2019, 370, 695-705.	6.6	24
201	Activated Carbons from Lignin: Their Application in Liquid Phase Adsorption. Separation Science and Technology, 2007, 42, 3363-3389.	1.3	23
202	Integrated CWPO and Biological Treatment for the Removal of 4-Chlorophenol From Water. Separation Science and Technology, 2010, 45, 1595-1602.	1.3	23
203	Development of porosity upon physical activation of grape seeds char by gas phase oxygen chemisorption–desorption cycles. Chemical Engineering Journal, 2013, 231, 172-181.	6.6	23
204	Preparation of granular activated carbons from grape seeds by cycles of liquid phase oxidation and thermal desorption. Fuel Processing Technology, 2014, 118, 148-155.	3.7	23
205	Degradation of organochlorinated pollutants in water by catalytic hydrodechlorination and photocatalysis. Catalysis Today, 2016, 266, 168-174.	2.2	23
206	Granular Mesoporous Activated Carbons from Waste Tires by Cyclic Oxygen Chemisorption–Desorption. Industrial & Engineering Chemistry Research, 2012, 51, 2609-2614.	1.8	22
207	Intensification of sequencing batch reactors by cometabolism and bioaugmentation with <i>Pseudomonas putida</i> for the biodegradation of 4â€chlorophenol. Journal of Chemical Technology and Biotechnology, 2012, 87, 1270-1275.	1.6	22
208	Combining efficiently catalytic hydrodechlorination and wet peroxide oxidation (HDC–CWPO) for the abatement of organochlorinated water pollutants. Applied Catalysis B: Environmental, 2014, 150-151, 197-203.	10.8	22
209	Application of highâ€ŧemperature Fenton oxidation for the treatment of sulfonation plant wastewater. Journal of Chemical Technology and Biotechnology, 2015, 90, 1839-1846.	1.6	22
210	Kinetic modeling of wet peroxide oxidation with a carbon black catalyst. Applied Catalysis B: Environmental, 2017, 209, 701-710.	10.8	22
211	N-Doped CMK-3 Carbons Supporting Palladium Nanoparticles as Catalysts for Hydrodechlorination. Industrial & Engineering Chemistry Research, 2019, 58, 4355-4363.	1.8	22
212	Adsorption of Anionic Surfactant Mixtures by Polymeric Resins. Separation Science and Technology, 1992, 27, 1065-1076.	1.3	21
213	A kinetic study of reuterin production by Lactobacillus reuteri PRO 137 in resting cells. Biochemical Engineering Journal, 2007, 35, 218-225.	1.8	21
214	Activation of Waste Tire Char upon Cyclic Oxygen Chemisorptionâ^'Desorption. Industrial & Engineering Chemistry Research, 2009, 48, 4664-4670.	1.8	21
215	Preparation of hollow submicrocapsules with a mesoporous carbon shell. Carbon, 2013, 59, 430-438.	5.4	21
216	Diuron Multilayer Adsorption on Activated Carbon from CO ₂ Activation of Grape Seeds. Chemical Engineering Communications, 2016, 203, 103-113.	1.5	21

#	Article	IF	CITATIONS
217	Valorization of chloromethanes by hydrodechlorination with metallic catalysts. Catalysis Today, 2018, 310, 75-85.	2.2	21
218	Chloroform conversion into ethane and propane by catalytic hydrodechlorination with Pd supported on activated carbons from lignin. Catalysis Science and Technology, 2018, 8, 3926-3935.	2.1	21
219	High load drug release systems based on carbon porous nanocapsule carriers. Ibuprofen case study. Journal of Materials Chemistry B, 2020, 8, 5293-5304.	2.9	21
220	Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts. Water Science and Technology, 2010, 61, 2769-2778.	1.2	20
221	Copper Removal by an Adsorbing Colloid Foam Flotation Pilot Plant. Separation Science and Technology, 1982, 17, 359-367.	1.3	19
222	Cationic dyes removal by multilayer adsorption on activated carbons from lignin. Journal of Porous Materials, 2011, 18, 693-702.	1.3	19
223	Complete degradation of the persistent antiâ€depressant sertraline in aqueous solution by solar photoâ€Fenton oxidation. Journal of Chemical Technology and Biotechnology, 2014, 89, 814-818.	1.6	19
224	Catalytic hydrodechlorination of p-chloro-m-cresol and 2,4,6-trichlorophenol with Pd and Rh supported on Al-pillared clays. Chemical Engineering Journal, 2015, 273, 363-370.	6.6	19
225	Multiple approaches to control and assess the size of Pd nanoparticles synthesized via water-in-oil microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497, 28-34.	2.3	19
226	On the performance of Pd and Rh catalysts over different supports in the hydrodechlorination of the MCPA herbicide. Applied Catalysis B: Environmental, 2016, 186, 151-156.	10.8	19
227	Hollow Nitrogen- or Boron-Doped Carbon Submicrospheres with a Porous Shell: Preparation and Application as Supports for Hydrodechlorination Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 7665-7674.	1.8	19
228	P-, B- and N-doped carbon black for the catalytic wet peroxide oxidation of phenol: Activity, stability and kinetic studies. Catalysis Communications, 2017, 102, 131-135.	1.6	19
229	Enhancement of the activity of Pd/C catalysts in aqueous phase hydrodechlorination through doping of carbon supports. Catalysis Science and Technology, 2018, 8, 2598-2605.	2.1	19
230	Catalytic reduction of bromate over catalysts based on Pd nanoparticles synthesized via water-in-oil microemulsion. Applied Catalysis B: Environmental, 2018, 237, 206-213.	10.8	19
231	Activated Carbons from Eucalyptus Wood. Influence of the Carbonization Temperature. Separation Science and Technology, 1997, 32, 1115-1126.	1.3	18
232	Steam Reforming of Methanol with Sm ₂ O ₃ â^'CeO ₂ -Supported Palladium Catalysts: Influence of the Thermal Treatments of Catalyst and Support. Industrial & Engineering Chemistry Research, 2009, 48, 8364-8372.	1.8	18
233	CWPO of 4-CP and industrial wastewater with Al–Fe pillared clays. Water Science and Technology, 2010, 61, 2161-2168.	1.2	18
234	Anaerobic treatment of wastewater from used industrial oil recovery. Journal of Chemical Technology and Biotechnology, 2012, 87, 1320-1328.	1.6	18

#	Article	IF	CITATIONS
235	Fate of iron oxalates in aqueous solution: The role of temperature, iron species and dissolved oxygen. Journal of Environmental Chemical Engineering, 2014, 2, 2236-2241.	3.3	18
236	Fouling control in membrane bioreactors with sewage-sludge based adsorbents. Water Research, 2016, 105, 65-75.	5.3	18
237	Degradation of imidazolium-based ionic liquids by catalytic wet peroxide oxidation with carbon and magnetic iron catalysts. Journal of Chemical Technology and Biotechnology, 2016, 91, 2882-2887.	1.6	18
238	Electrolysis with diamond anodes: Eventually, there are refractory species!. Chemosphere, 2018, 195, 771-776.	4.2	18
239	Photostability and photocatalytic degradation of ionic liquids in water under solar light. RSC Advances, 2019, 9, 2026-2033.	1.7	18
240	Detoxification of Kraft pulp ECF bleaching effluents by catalytic hydrotreatment. Water Research, 2007, 41, 915-923.	5.3	17
241	Unstructured kinetic model for reuterin and 1,3â€propanediol production by <i>Lactobacillus reuteri</i> from glycerol/glucose cofermentation. Journal of Chemical Technology and Biotechnology, 2009, 84, 675-680.	1.6	17
242	Treatment of cosmetic wastewater by a full-scale membrane bioreactor (MBR). Environmental Science and Pollution Research, 2014, 21, 12662-12670.	2.7	17
243	On the effect of Ce incorporation on pillared clay-supported Pt and Ir catalysts for aqueous-phase hydrodechlorination. Applied Catalysis B: Environmental, 2016, 197, 236-243.	10.8	17
244	The Removal of Mixtures of Metals by an Adsorbing Colloid Foam Flotation Pilot Plant. Separation Science and Technology, 1982, 17, 683-693.	1.3	16
245	Colloidal and microemulsion synthesis of rhenium nanoparticles in aqueous medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 202-210.	2.3	16
246	Hydrodechlorination activity of catalysts based on nitrogen-doped carbons from low-density polyethylene. Carbon, 2015, 87, 444-452.	5.4	16
247	Dechlorination and oxidative degradation of 4-chlorophenol with nanostructured iron-silver alginate beads. Journal of Environmental Chemical Engineering, 2017, 5, 838-842.	3.3	16
248	Exploration of the treatment of fish-canning industry effluents by aqueous-phase reforming using Pt/C catalysts. Environmental Science: Water Research and Technology, 2018, 4, 1979-1987.	1.2	16
249	Improving the Fenton process by visible LED irradiation. Environmental Science and Pollution Research, 2016, 23, 23449-23455.	2.7	15
250	Copper Removal from Water by Chemical Reduction with Sodium Borohydride. Separation Science and Technology, 1992, 27, 1449-1468.	1.3	14
251	Oxidation Reactivity and Structure of LDPE-Derived Solid Carbons: A Temperature-Programmed Oxidation Study. Energy & Fuels, 2013, 27, 1151-1161.	2.5	14
252	Identification of by-products and toxicity assessment in aqueous-phase hydrodechlorination of diuron with palladium on activated carbon catalysts. Chemosphere, 2013, 91, 1317-1323.	4.2	13

#	Article	IF	CITATIONS
253	Anaerobic biodegradability of mixtures of pesticides in an expanded granular sludge bed reactor. Water Science and Technology, 2014, 69, 532-538.	1.2	13
254	Kinetic Study of the Hydrodechlorination of Chloromethanes with Activated-Carbon-Supported Metallic Catalysts. Industrial & Engineering Chemistry Research, 2015, 54, 2023-2029.	1.8	13
255	Dechlorination of Dichloromethane by Hydrotreatment with Bimetallic Pd-Pt/C Catalyst. Catalysis Letters, 2016, 146, 2614-2621.	1.4	13
256	Combining HDC and CWPO for the removal of p -chloro- m -cresol from water under ambient-like conditions. Applied Catalysis B: Environmental, 2017, 216, 20-29.	10.8	13
257	Twoâ€step persulfate and Fenton oxidation of naphthenic acids in water. Journal of Chemical Technology and Biotechnology, 2018, 93, 2262-2270.	1.6	13
258	Effect of structural ordering of the carbon support on the behavior of Pd catalysts in aqueous-phase hydrodechlorination. Chemical Engineering Science, 2018, 176, 400-408.	1.9	13
259	Activated carbon as catalyst for microwave-assisted wet peroxide oxidation of aromatic hydrocarbons. Environmental Science and Pollution Research, 2018, 25, 27748-27755.	2.7	13
260	Anaerobic Co-digestion of the Organic Fraction of Municipal Solid Waste and the Liquid Fraction From the Hydrothermal Carbonization of Industrial Sewage Sludge Under Thermophilic Conditions. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	13
261	Catalytic wet peroxide oxidation of imidazolium-based ionic liquids: Catalyst stability and biodegradability enhancement. Chemical Engineering Journal, 2019, 376, 120431.	6.6	13
262	Promoting Light Hydrocarbons Yield by Catalytic Hydrodechlorination of Residual Chloromethanes Using Palladium Supported on Zeolite Catalysts. Catalysts, 2020, 10, 199.	1.6	12
263	Short-term fouling control by cyclic aeration in membrane bioreactors for cosmetic wastewater treatment. Desalination and Water Treatment, 2015, 56, 3599-3606.	1.0	11
264	Selective Reduction of Nitrite to Nitrogen with Carbon-Supported Pd–AOT Nanoparticles. Industrial & Engineering Chemistry Research, 2017, 56, 11745-11754.	1.8	11
265	Thiamethoxam removal by Fenton and biological oxidation. Journal of Chemical Technology and Biotechnology, 2020, 95, 913-921.	1.6	11
266	Deactivation and regeneration of activated carbon-supported Rh and Ru catalysts in the hydrodechlorination of chloromethanes into light olefins. Chemical Engineering Journal, 2020, 397, 125479.	6.6	11
267	Heavy Metal Removal by Chemical Reduction with Sodium Borohydride. A Pilot-Plant Study. Separation Science and Technology, 1992, 27, 1569-1582.	1.3	10
268	Influence of Operating Variables on Solid Carbons Obtained by Low-Density Polyethylene Pyrolysis in a Semicontinuous Fast Heating Quartz Reactor. Energy & Fuels, 2009, 23, 6102-6110.	2.5	10
269	Iron catalyst supported on modified kaolin for catalytic wet peroxide oxidation. Clay Minerals, 2019, 54, 67-73.	0.2	10
270	Control of selectivity in the reduction of nitrate by shielding of Pd–Cu/C catalysts with AOT. Journal of Industrial and Engineering Chemistry, 2020, 82, 42-49.	2.9	10

#	Article	IF	CITATIONS
271	Removal of Zinc by Adsorbing Colloid Foam Flotation: Pilot Plant Study. Separation Science and Technology, 1982, 17, 673-682.	1.3	9
272	Anaerobic biodegradation of 2,4,6-trichlorophenol by methanogenic granular sludge: role of co-substrates and methanogenic inhibition. Water Science and Technology, 2009, 59, 1449-1456.	1.2	9
273	Effects of heat treatment on the structure of LDPE-derived solid carbons. Chemical Engineering Journal, 2011, 172, 1126-1136.	6.6	9
274	Enhanced Pd pillared clays by Rh inclusion for the catalytic hydrodechlorination of chlorophenols in water. Water Science and Technology, 2012, 65, 653-660.	1.2	9
275	Kinetic Analysis of 4-Chlorophenol Hydrodechlorination Catalyzed by Rh Nanoparticles Based on the Two-Step Reaction and Langmuir–Hinshelwood Mechanisms. Catalysis Letters, 2014, 144, 2080-2085.	1.4	9
276	Metal-surfactant interaction as a tool to control the catalytic selectivity of Pd catalysts. Applied Catalysis A: General, 2017, 529, 32-39.	2.2	9
277	Properties of Carbon-supported Precious Metals Catalysts under Reductive Treatment and Their Influence in the Hydrodechlorination of Dichloromethane. Catalysts, 2018, 8, 664.	1.6	9
278	Selectivity to Olefins in the Hydrodechlorination of Chloroform with Activated Carbon-Supported Palladium Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 20592-20600.	1.8	9
279	Recycling of Gas Phase Residual Dichloromethane by Hydrodechlorination: Regeneration of Deactivated Pd/C Catalysts. Catalysts, 2019, 9, 733.	1.6	9
280	Effects of Reactor Configuration on the Yield of Solid Carbon from Pyrolysis of Low-Density Polyethylene. Energy & Fuels, 2009, 23, 6095-6101.	2.5	8
281	Carbon Materials from Lignin and Their Applications. Biofuels and Biorefineries, 2016, , 217-262.	0.5	8
282	Understanding Hydrodechlorination of Chloromethanes. Past and Future of the Technology. Catalysts, 2020, 10, 1462.	1.6	8
283	A kinetic study on chemical activation of holm oak wood. Journal of Analytical and Applied Pyrolysis, 1990, 18, 117-126.	2.6	7
284	Anaerobic biodegradation of 2,4,6-trichlorophenol in expanded granular sludge bed and fluidized bed biofilm reactors bioaugmented with Desulfitobacterium spp Water Science and Technology, 2011, 64, 293-299.	1.2	7
285	Platinum Nanoparticles Supported on Activated Carbon Catalysts for the Gas-Phase Hydrodechlorination of Dichloromethane: Influence of Catalyst Composition and Operating Conditions. Nanomaterials and Nanotechnology, 2016, 6, 18.	1.2	7
286	Stability of carbon-supported iron catalysts for catalytic wet peroxide oxidation of ionic liquids. Journal of Environmental Chemical Engineering, 2018, 6, 6444-6450.	3.3	7
287	Biological oxidation of cholineâ€based ionic liquids in sequencing batch reactors. Journal of Chemical Technology and Biotechnology, 2020, 95, 922-931.	1.6	7
288	An overview of ionic liquid degradation by advanced oxidation processes. Critical Reviews in Environmental Science and Technology, 2022, 52, 2844-2887.	6.6	7

#	Article	IF	CITATIONS
289	ANALYSIS OF THE OPERATING CONDITIONS IN THE TREATMENT OF COSMETIC WASTEWATER BY SEQUENCING BATCH REACTORS. Environmental Engineering and Management Journal, 2014, 13, 2955-2962.	0.2	7
290	On the biodegradability of nitrophenols and their reaction products by catalytic hydrogenation*. Journal of Chemical Technology and Biotechnology, 2012, 87, 1263-1269.	1.6	6
291	Structured photocatalysts for the removal of emerging contaminants under visible or solar light. , 2020, , 41-98.		6
292	Effect of the operating conditions on the colloidal and microemulsion synthesis of Pt in aqueous phase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 525, 77-84.	2.3	5
293	Metal–organic frameworks for water purification. , 2020, , 241-283.		5
294	Kraft Wastewater Cleaning with Polymeric Adsorbents. Separation Science and Technology, 1985, 20, 481-487.	1.3	4
295	Biodegradation Phenomena during Soil Vapor Extraction. III. Sensitivity Studies for Two Substrates. Separation Science and Technology, 1994, 29, 1275-1291.	1.3	4
296	Biodegradation Phenomena during Soil Vapor Extraction: Sensitivity Studies for Single Substrate Systems. Separation Science and Technology, 1994, 29, 557-578.	1.3	3
297	Activity and Stability of Pd Bimetallic Catalysts for Catalytic Nitrate Reduction. Catalysts, 2022, 12, 729.	1.6	3
298	Sedimentation and Filtration of Zinc Oxi-hydroxychloride Suspensions. Separation Science and Technology, 1983, 18, 1045-1063.	1.3	2
299	Copper (2+), Zinc (2+), and Nickel (2+) Uptake by Activated Sludge. Separation Science and Technology, 1985, 20, 587-597.	1.3	2
300	Biomass-Derived Microporous Carbon Materials with an Open Structure of Cross-Linked Sub-microfibers with Enhanced Adsorption Characteristics. Energy & Fuels, 2016, 30, 9510-9516.	2.5	0