
Olivier Christiaens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/406922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biology, 2010, 8, e1000313.	5.6	913
2	The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 2011, 479, 487-492.	27.8	897
3	RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far. Frontiers in Physiology, 2016, 7, 553.	2.8	386
4	The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 2015, 16, 76.	8.8	330
5	RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Management Science, 2018, 74, 1239-1250.	3.4	277
6	Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Science, 2013, 20, 4-14.	3.0	269
7	DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides, 2014, 53, 307-314.	2.4	242
8	A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Scientific Reports, 2018, 8, 1931.	3.3	215
9	Double-Stranded RNA Technology to Control Insect Pests: Current Status and Challenges. Frontiers in Plant Science, 2020, 11, 451.	3.6	165
10	The involvement of clathrinâ€mediated endocytosis and two Sidâ€1â€like transmembrane proteins in doubleâ€stranded RNA uptake in the Colorado potato beetle midgut. Insect Molecular Biology, 2016, 25, 315-323.	2.0	143
11	A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biology, 2015, 16, 83.	8.8	130
12	The challenge of RNAi-mediated control of hemipterans. Current Opinion in Insect Science, 2014, 6, 15-21.	4.4	128
13	A nuclease specific to lepidopteran insects suppresses RNAi. Journal of Biological Chemistry, 2018, 293, 6011-6021.	3.4	125
14	Increased RNAi Efficacy in Spodoptera exigua via the Formulation of dsRNA With Guanylated Polymers. Frontiers in Physiology, 2018, 9, 316.	2.8	122
15	Oral RNAi to control Drosophila suzukii: laboratory testing against larval and adult stages. Journal of Pest Science, 2016, 89, 803-814.	3.7	119
16	RNAâ€based biocontrol compounds: current status and perspectives to reach the market. Pest Management Science, 2020, 76, 841-845.	3.4	110
17	Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAiâ€caused mortality in the Neotropical stink bug <i>Euschistus heros</i> . Pest Management Science, 2019, 75, 537-548.	3.4	87
18	RNAi: What is its position in agriculture?. Journal of Pest Science, 2020, 93, 1125-1130.	3.7	84

OLIVIER CHRISTIAENS

#	Article	IF	CITATIONS
19	Comprehensive survey of developmental genes in the pea aphid, <i>Acyrthosiphon pisum</i> : frequent lineageâ€specific duplications and losses of developmental genes. Insect Molecular Biology, 2010, 19, 47-62.	2.0	81
20	Halloween genes and nuclear receptors in ecdysteroid biosynthesis and signalling in the pea aphid. Insect Molecular Biology, 2010, 19, 187-200.	2.0	81
21	RNAi-based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil <i>Cylas puncticollis</i> (Coleoptera: Brentidae). Pest Management Science, 2017, 73, 44-52.	3.4	81
22	Asian Citrus Psyllid RNAi Pathway – RNAi evidence. Scientific Reports, 2016, 6, 38082.	3.3	73
23	Literature review of baseline information on RNAi to support the environmental risk assessment of RNAiâ€based GM plants. EFSA Supporting Publications, 2018, 15, 1424E.	0.7	63
24	Rethink RNAi in Insect Pest Control: Challenges and Perspectives. Advances in Insect Physiology, 2018, , 1-17.	2.7	62
25	The CCK(-like) receptor in the animal kingdom: Functions, evolution and structures. Peptides, 2011, 32, 607-619.	2.4	60
26	Nuclease activity decreases the RNAi response in the sweetpotato weevil Cylas puncticollis. Insect Biochemistry and Molecular Biology, 2019, 110, 80-89.	2.7	60
27	Topical dsRNA delivery induces gene silencing and mortality in the pea aphid. Pest Management Science, 2019, 75, 2873-2881.	3.4	58
28	Beyond insects: current status and achievements of RNA interference in mite pests and future perspectives. Pest Management Science, 2018, 74, 2680-2687.	3.4	56
29	Genome-enabled insights into the biology of thrips as crop pests. BMC Biology, 2020, 18, 142.	3.8	54
30	Induction of RNAi Core Machinery's Gene Expression by Exogenous dsRNA and the Effects of Pre-exposure to dsRNA on the Gene Silencing Efficiency in the Pea Aphid (Acyrthosiphon pisum). Frontiers in Physiology, 2018, 9, 1906.	2.8	49
31	Engineered Flock House Virus for Targeted Gene Suppression Through RNAi in Fruit Flies (Drosophila) Tj ETQq1 1	0.78431	4 rgBT /Over
32	Generation of Virus- and dsRNA-Derived siRNAs with Species-Dependent Length in Insects. Viruses, 2019, 11, 738.	3.3	43
33	RNAi in Insects: A Revolution in Fundamental Research and Pest Control Applications. Insects, 2020, 11, 415.	2.2	43
34	Biosafety of GM Crop Plants Expressing dsRNA: Data Requirements and EU Regulatory Considerations. Frontiers in Plant Science, 2020, 11, 940.	3.6	43
35	Transcriptome Analysis and Systemic RNAi Response in the African Sweetpotato Weevil (Cylas) Tj ETQq1 1 0.784	4314.rgBT 2.5	/Overlock 10 40
36	RNA interference: a promising biopesticide strategy against the African Sweetpotato Weevil Cylas brunneus. Scientific Reports, 2016, 6, 38836.	3.3	40

OLIVIER CHRISTIAENS

#	Article	IF	CITATIONS
37	Protein N-glycosylation and N-glycan trimming are required for postembryonic development of the pest beetle Tribolium castaneum. Scientific Reports, 2016, 6, 35151.	3.3	39
38	Potential of RNA interference in the study and management of the whitefly, <i>Bemisia tabaci</i> . Archives of Insect Biochemistry and Physiology, 2019, 100, e21522.	1.5	35
39	<scp>RNAi</scp> â€mediated mortality in southern green stinkbug <scp><i>Nezara viridula</i></scp> by oral delivery of <scp>dsRNA</scp> . Pest Management Science, 2021, 77, 77-84.	3.4	27
40	Accelerated delivery of dsRNA in lepidopteran midgut cells by a Galanthus nivalis lectin (GNA)-dsRNA-binding domain fusion protein. Pesticide Biochemistry and Physiology, 2021, 175, 104853.	3.6	23
41	Implementation of RNAi-based arthropod pest control: environmental risks, potential for resistance and regulatory considerations. Journal of Pest Science, 2022, 95, 1-15.	3.7	22
42	Cloning and functional analysis of the ecdysteroid receptor complex in the opossum shrimp Neomysis integer (Leach, 1814). Aquatic Toxicology, 2013, 130-131, 31-40.	4.0	21
43	<scp>RNA</scp> interference in shrimp and potential applications in aquaculture. Reviews in Aquaculture, 2018, 10, 573-584.	9.0	18
44	Silencing of Double-Stranded Ribonuclease Improves Oral RNAi Efficacy in Southern Green Stinkbug Nezara viridula. Insects, 2021, 12, 115.	2.2	18
45	The Use of Nanocarriers to Improve the Efficiency of RNAi-Based Pesticides in Agriculture. , 2020, , 49-68.		18
46	A sequence complementarity-based approach for evaluating off-target transcript knockdown in Bombus terrestris, following ingestion of pest-specific dsRNA. Journal of Pest Science, 2021, 94, 487-503.	3.7	16
47	Differential transcriptome analysis of the common shrimp Crangon crangon: Special focus on the nuclear receptors and RNAi-related genes. General and Comparative Endocrinology, 2015, 212, 163-177.	1.8	15
48	RNAi efficacy is enhanced by chronic dsRNA feeding in pollen beetle. Communications Biology, 2021, 4, 444.	4.4	15
49	GNBP1 as a potential RNAi target to enhance the virulence of Beauveria bassiana for aphid control. Journal of Pest Science, 2022, 95, 87-100.	3.7	15
50	First Evidence of Bud Feeding-Induced RNAi in a Crop Pest via Exogenous Application of dsRNA. Insects, 2020, 11, 769.	2.2	13
51	Involvement of clathrin-dependent endocytosis in cellular dsRNA uptake in aphids. Insect Biochemistry and Molecular Biology, 2021, 132, 103557.	2.7	13
52	Exploration of the virome of the European brown shrimp (Crangon crangon). Journal of General Virology, 2020, 101, 651-666.	2.9	13
53	<i>Tudor </i> knockdown disrupts ovary development in <i>Bactrocera dorsalis</i> . Insect Molecular Biology, 2019, 28, 136-144.	2.0	12
54	Risk assessment of RNAi-based pesticides to non-target organisms: Evaluating the effects of sequence similarity in the parasitoid wasp Telenomus podisi. Science of the Total Environment, 2022, 832, 154746.	8.0	12

OLIVIER CHRISTIAENS

#	Article	IF	CITATIONS
55	Sequencing and structural homology modeling of the ecdysone receptor in two chrysopids used in biological control of pest insects. Ecotoxicology, 2012, 21, 906-918.	2.4	11
56	Targeting a coatomer protein complex-I gene via RNA interference results in effective lethality in the pollen beetle Brassicogethes aeneus. Journal of Pest Science, 2021, 94, 703-712.	3.7	11
57	The cuticle protein MPCP2 is involved in Potato virus Y transmission in the green peach aphid Myzus persicae. Journal of Plant Diseases and Protection, 2019, 126, 351-357.	2.9	10
58	Identification and Full Characterisation of Two Novel Crustacean Infecting Members of the Family Nudiviridae Provides Support for Two Subfamilies. Viruses, 2021, 13, 1694.	3.3	9
59	Ecdysteroid receptor docking suggests that dibenzoylhydrazineâ€based insecticides are devoid of any deleterious effect on the parasitic wasp <i>Psyttalia concolor</i> (Hym. Braconidae). Pest Management Science, 2012, 68, 976-985.	3.4	8
60	Selectivity of diacylhydrazine insecticides to the predatory bug <i>Orius laevigatus: in vivo</i> and modelling/docking experiments. Pest Management Science, 2012, 68, 1586-1594.	3.4	8
61	Identification of RNAi-related genes and transgenerational efficiency of RNAi in Artemia franciscana. Aquaculture, 2019, 501, 285-292.	3.5	7
62	Transcriptome analysis of neuropeptides in the beneficial insect lacewing (Chrysoperla carnea) identifies kinins as a selective pesticide target: a biostable kinin analogue with activity against the peach potato aphid Myzus persicae. Journal of Pest Science, 2023, 96, 253-264.	3.7	7
63	Insect growth regulators as potential insecticides to control olive fruit fly (<i>Bactrocera oleae</i>) Tj ETQq1 1 0 27-34.	.784314 r 3.4	gBT /Overloc 6
64	Parental RNA interference as a tool to study genes involved in rostrum development in the Neotropical brown stink bug, Euschistus heros. Journal of Insect Physiology, 2021, 128, 104161.	2.0	6
65	Structural changes under low evolutionary constraint may decrease the affinity of dibenzoylhydrazine insecticides for the ecdysone receptor in nonâ€lepidopteran insects. Insect Molecular Biology, 2012, 21, 488-501.	2.0	5
66	First Evidence of Feeding-Induced RNAi in Banana Weevil via Exogenous Application of dsRNA. Insects, 2022, 13, 40.	2.2	4
67	Development and application of a duplex PCR assay for detection of Crangon crangon bacilliform virus in populations of European brown shrimp (Crangon crangon). Journal of Invertebrate Pathology, 2018, 153, 195-202.	3.2	3
68	Improvements in larviculture of Crangon crangon as a step towards its commercial aquaculture. Aquaculture Research, 2019, 50, 1658-1667.	1.8	1
69	Environmental safety assessment of plants expressing RNAi for pest control , 2021, , 117-130.		1
70	Anther-Feeding-Induced RNAi in Brassicogethes aeneus Larvae. Frontiers in Agronomy, 2021, 3, .	3.3	1
71	Toxicity and Metabolism of Zeta-Cypermethrin in Field-Collected and Laboratory Strains of the Neotropical Predator Chrysoperla externa Hagen (Neuroptera: Chrysopidae). Neotropical Entomology, 2017, 46, 310-315.	1.2	0