Cristina Cadoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4069103/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Opioid Reinforcement: What It Is And How It Can Be Modulated By Cannabinoids. , 2022, , 1-28.		0
2	Influence of Age and Genetic Background on Ethanol Intake and Behavioral Response Following Ethanol Consumption and During Abstinence in a Model of Alcohol Abuse. Frontiers in Behavioral Neuroscience, 2022, 16, 858940.	2.0	1
3	Adolescence versus adulthood: Differences in basal mesolimbic and nigrostriatal dopamine transmission and response to drugs of abuse. Addiction Biology, 2020, 25, e12721.	2.6	19
4	Role of genetic background in the effects of adolescent nicotine exposure on mesolimbic dopamine transmission. Addiction Biology, 2020, 25, e12803.	2.6	7
5	Adolescent cannabis exposure increases heroin reinforcement in rats genetically vulnerable to addiction. Neuropharmacology, 2020, 166, 107974.	4.1	18
6	Editorial: Deconstructing the Influence of Genetic and Age Vulnerability to Psychiatric Disorders. Frontiers in Psychiatry, 2019, 10, 13.	2.6	0
7	Widespread reduction of dopamine cell bodies and terminals in adult rats exposed to a low dose regimen of MDMA during adolescence. Neuropharmacology, 2017, 123, 385-394.	4.1	17
8	ls there a Teratogenicity Risk Associated with Cannabis and Synthetic Cannabimimetics' (â€~Spice') Intak CNS and Neurological Disorders - Drug Targets, 2017, 16, 585-591.	e? 1.4	11
9	Cannabis; Epidemiological, Neurobiological and Psychopathological Issues: An Update. CNS and Neurological Disorders - Drug Targets, 2017, 16, 598-609.	1.4	25
10	Fischer 344 and Lewis Rat Strains as a Model of Genetic Vulnerability to Drug Addiction. Frontiers in Neuroscience, 2016, 10, 13.	2.8	29
11	Impairment of acquisition of intravenous cocaine self-administration by RNA-interference of dopamine D1-receptors in the nucleus accumbens shell. Neuropharmacology, 2015, 89, 398-411.	4.1	29
12	Strain dependence of adolescent Cannabis influence on heroin reward and mesolimbic dopamine transmission in adult Lewis and Fischer 344 rats. Addiction Biology, 2015, 20, 132-142.	2.6	54
13	Conditioned saccharin avoidance induced by infusion of amphetamine in the nucleus accumbens shell and morphine in the ventral tegmental area: Behavioral and biochemical study. Behavioural Brain Research, 2014, 269, 55-60.	2.2	3
14	Differential influence of morphine sensitization on accumbens shell and core dopamine responses to morphine- and food-conditioned stimuli. Psychopharmacology, 2013, 225, 697-706.	3.1	11
15	Conditioned saccharin avoidance and sensitization to drugs of abuse. Behavioural Brain Research, 2010, 214, 248-253.	2.2	5
16	Nicotine differentially affects dopamine transmission in the nucleus accumbens shell and core of Lewis and Fischer 344 rats. Neuropharmacology, 2009, 57, 496-501.	4.1	18
17	Behavioral sensitization to Δ ⁹ â€ŧetrahydrocannabinol and crossâ€sensitization with morphine: differential changes in accumbal shell and core dopamine transmission. Journal of Neurochemistry, 2008, 106, 1586-1593	3.9	67
18	Longâ€ŧerm increase in GAD67 mRNA expression in the central amygdala of rats sensitized by drugs and stress. European Journal of Neuroscience, 2008, 27, 1220-1230.	2.6	14

Cristina Cadoni

#	Article	IF	CITATIONS
19	Differences in dopamine responsiveness to drugs of abuse in the nucleus accumbens shell and core of Lewis and Fischer 344 rats. Journal of Neurochemistry, 2007, 103, 487-499.	3.9	37
20	B67 INCREASE IN BASAL GAD67 mRNA EXPRESSION IN THE CENTRAL NUCLEUS OF THE AMYGDALA: A MARKER OF STRESS AND DRUG-INDUCED BEHAVIOURAL SENSITIZATION. Behavioural Pharmacology, 2005, 16, S87.	1.7	0
21	Effect of 3,4-methylendioxymethamphetamine (MDMA, "ecstasyâ€) on dopamine transmission in the nucleus accumbens shell and core. Brain Research, 2005, 1055, 143-148.	2.2	44
22	Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology, 2004, 47, 227-241.	4.1	777
23	Selective psychostimulant sensitization by food restriction: differential changes in accumbens shell and core dopamine. European Journal of Neuroscience, 2003, 18, 2326-2334.	2.6	82
24	Behavioural sensitization after repeated exposure to Δ 9 -tetrahydrocannabinol and cross-sensitization with morphine. Psychopharmacology, 2001, 158, 259-266.	3.1	151
25	Intravenous administration of ecstasy (3,4-methylendioxymethamphetamine) enhances cortical and striatal acetylcholine release in vivo. European Journal of Pharmacology, 2001, 418, 207-211.	3.5	40
26	Psychostimulant sensitization: differential changes in accumbal shell and core dopamine. European Journal of Pharmacology, 2000, 388, 69-76.	3.5	156
27	Differential changes in accumbens shell and core dopamine in behavioral sensitization to nicotine. European Journal of Pharmacology, 2000, 387, R23-R25.	3.5	147
28	Drug Addiction as a Disorder of Associative Learning: Role of Nucleus Accumbens Shell/Extended Amygdala Dopamine. Annals of the New York Academy of Sciences, 1999, 877, 461-485.	3.8	204
29	Reciprocal changes in dopamine responsiveness in the nucleus accumbens shell and core and in the dorsal caudate–putamen in rats sensitized to morphine. Neuroscience, 1999, 90, 447-455.	2.3	167
30	Homologies and Differences in the Action of Drugs of Abuse and a Conventional Reinforcer (Food) on Dopamine Transmission: An Interpretative Framework of the Mechanism of Drug Dependence. Advances in Pharmacology, 1997, 42, 983-987.	2.0	45
31	Differential role of newly synthesized and stored dopamine in the in vivo stimulation of dopamine transmission by amphetamine and cocaine. Behavioural Pharmacology, 1995, 6, 79.	1.7	0
32	Role of vesicular dopamine in the in vivo stimulation of striatal dopamine transmission by amphetamine: Evidence from microdialysis and Fos immunohistochemistry. Neuroscience, 1995, 65, 1027-1039.	2.3	61
33	Neuroleptics increase striatal acetylcholine release by a sequential D-1 and D-2 receptor mechanism. NeuroReport, 1993, 4, 1335-1338.	1.2	13
34	Complex interactions between the steroid derivative RU 5135 and the GABAA-receptor complex. European Journal of Pharmacology, 1992, 227, 147-151.	2.6	6
35	Calcium-Dependent, Tetrodotoxin-Sensitive Stimulation of Cortical Serotonin Release After a Tryptophan Load. Journal of Neurochemistry, 1989, 53, 976-978.	3.9	56