Paul A Janmey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4069069/publications.pdf

Version: 2024-02-01

150 papers 18,757 citations

52 h-index 132 g-index

173 all docs

173 docs citations

173 times ranked

20446 citing authors

#	Article	IF	CITATIONS
1	Extracellular Vimentin as a Target Against SARSâ€CoVâ€2 Host Cell Invasion. Small, 2022, 18, e2105640.	5.2	41
2	The correlation between cell and nucleus size is explained by an eukaryotic cell growth model. PLoS Computational Biology, 2022, 18, e1009400.	1.5	28
3	Materials science and mechanosensitivity of living matter. Applied Physics Reviews, 2022, 9, 011320.	5. 5	4
4	N-Acetyl-Cysteine Increases Activity of Peanut-Shaped Gold Nanoparticles Against Biofilms Formed by Clinical Strains of Pseudomonas aeruginosa Isolated from Sputum of Cystic Fibrosis Patients. Infection and Drug Resistance, 2022, Volume 15, 851-871.	1.1	4
5	Watching a cell sheet transform from soft to stiff. Biophysical Journal, 2022, , .	0.2	O
6	Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116718119.	3.3	20
7	Microindentation of Fluidâ€Filled Cellular Domes Reveals the Contribution of RhoAâ€ROCK Signaling to Multicellular Mechanics. Small, 2022, , 2200883.	5.2	2
8	Unique Role of Vimentin Networks in Compression Stiffening of Cells and Protection of Nuclei from Compressive Stress. Nano Letters, 2022, 22, 4725-4732.	4.5	21
9	Polymerized ionic l <scp>iquidsâ€based</scp> hydrogels with intrinsic antibacterial activity: Modern weapons against a <scp>ntibioticâ€resistant</scp> infections. Journal of Applied Polymer Science, 2021, 138, 50222.	1.3	15
10	Rheological properties of hydrogels based on ionic liquids. Polymer Testing, 2021, 93, 106943.	2.3	20
11	In search of the correlation between nanomechanical and biomolecular properties of prostate cancer cells with different metastatic potential. Archives of Biochemistry and Biophysics, 2021, 697, 108718.	1.4	8
12	Long-range mechanical signaling in biological systems. Soft Matter, 2021, 17, 241-253.	1.2	36
13	Elasticity-dependent response of malignant cells to viscous dissipation. Biomechanics and Modeling in Mechanobiology, 2021, 20, 145-154.	1.4	14
14	Conductive chitosan/polyaniline hydrogel with cell-imprinted topography as a potential substrate for neural priming of adipose derived stem cells. RSC Advances, 2021, 11, 15795-15807.	1.7	16
15	A Novel Method to Make Polyacrylamide Gels with Mechanical Properties Resembling those of Biological Tissues. Bio-protocol, 2021, 11, e4131.	0.2	5
16	Fibrous Hydrogels under Multiâ€Axial Deformation: Persistence Length as the Main Determinant of Compression Softening. Advanced Functional Materials, 2021, 31, 2010527.	7.8	17
17	Allosteric HIV Integrase Inhibitors Promote Formation of Inactive Branched Polymers via Homomeric Carboxy-Terminal Domain Interactions. Structure, 2021, 29, 213-225.e5.	1.6	12
18	Vimentin tunes cell migration on collagen by controlling \hat{l}^21 integrin activation and clustering. Journal of Cell Science, 2021, 134, .	1.2	30

#	Article	IF	CITATIONS
19	Membrane signalosome: Where biophysics meets systems biology. Current Opinion in Systems Biology, 2021, 25, 34-41.	1.3	2
20	Polyelectrolyte Gels Formed by Filamentous Biopolymers: Dependence of Crosslinking Efficiency on the Chemical Softness of Divalent Cations. Gels, 2021, 7, 41.	2.1	6
21	Dynamic Tuning of Viscoelastic Hydrogels with Carbonyl Iron Microparticles Reveals the Rapid Response of Cells to Three-Dimensional Substrate Mechanics. ACS Applied Materials & Diterfaces, 2021, 13, 20947-20959.	4.0	15
22	Cell-induced confinement effects in soft tissue mechanics. Journal of Applied Physics, 2021, 129, .	1.1	15
23	The Atr-Chek1 pathway inhibits axon regeneration in response to Piezo-dependent mechanosensation. Nature Communications, 2021, 12, 3845.	5.8	19
24	Magnetic field tuning of mechanical properties of ultrasoft PDMS-based magnetorheological elastomers for biological applications. Multifunctional Materials, 2021, 4, 035001.	2.4	3
25	The vimentin cytoskeleton: when polymer physics meets cell biology. Physical Biology, 2021, 18, 011001.	0.8	26
26	Physics and Physiology of Cell Spreading in Two and Three Dimensions. Physiology, 2021, 36, 382-391.	1.6	11
27	Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies. Science Advances, 2021, 7, eabi8157.	4.7	36
28	Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity. Biomaterials Science, 2020, 8, 1316-1328.	2.6	44
29	Stiffness Sensing by Cells. Physiological Reviews, 2020, 100, 695-724.	13.1	227
30	Multiscale modeling of protein membrane interactions for nanoparticle targeting in drug delivery. Current Opinion in Structural Biology, 2020, 64, 104-110.	2.6	9
31	Evaluation of active Rac1 levels in cancer cells: A case of misleading conclusions from immunofluorescence analysis. Journal of Biological Chemistry, 2020, 295, 13698-13710.	1.6	11
32	Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 2020, 584, 535-546.	13.7	1,045
33	Mechanical and Nonâ€Mechanical Functions of Filamentous and Nonâ€Filamentous Vimentin. BioEssays, 2020, 42, e2000078.	1.2	55
34	Tissue Rheology as a Possible Complementary Procedure to Advance Histological Diagnosis of Colon Cancer. ACS Biomaterials Science and Engineering, 2020, 6, 5620-5631.	2.6	43
35	A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy. APL Bioengineering, 2020, 4, 036104.	3.3	36
36	Compression stiffening of fibrous networks with stiff inclusions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21037-21044.	3.3	38

#	Article	IF	CITATIONS
37	Cooperative roles of PAK1 and filamin A in regulation of vimentin assembly and cell extension formation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118739.	1.9	16
38	Scaling up single-cell mechanics to multicellular tissues $\hat{a} \in \text{``the role of the intermediate filament} \hat{a} \in \text{``desmosome network. Journal of Cell Science, 2020, 133, .}$	1.2	42
39	Matrix stiffness regulates endosomal escape of uropathogenic <i>E. coli</i> . Cellular Microbiology, 2020, 22, e13196.	1.1	10
40	Recombinant Human Plasma Gelsolin Stimulates Phagocytosis while Diminishing Excessive Inflammatory Responses in Mice with Pseudomonas aeruginosa Sepsis. International Journal of Molecular Sciences, 2020, 21, 2551.	1.8	10
41	Surface Topography and Electrical Signaling: Single and Synergistic Effects on Neural Differentiation of Stem Cells. Advanced Functional Materials, 2020, 30, 1907792.	7.8	50
42	Susceptibility of microbial cells to the modified PIP2-binding sequence of gelsolin anchored on the surface of magnetic nanoparticles. Journal of Nanobiotechnology, 2019, 17, 81.	4.2	19
43	Vimentin protects cells against nuclear rupture and DNA damage during migration. Journal of Cell Biology, 2019, 218, 4079-4092.	2.3	155
44	Loss of Vimentin Enhances Cell Motility through Small Confining Spaces. Small, 2019, 15, e1903180.	5.2	59
45	Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature, 2019, 573, 96-101.	13.7	118
46	Role of a Kinesin Motor in Cancer Cell Mechanics. Nano Letters, 2019, 19, 7691-7702.	4.5	26
47	Cell-matrix tension contributes to hypoxia in astrocyte-seeded viscoelastic hydrogels composed of collagen and hyaluronan. Experimental Cell Research, 2019, 376, 49-57.	1.2	11
48	Myosin IIA suppresses glioblastoma development in a mechanically sensitive manner. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15550-15559.	3.3	39
49	Hyaluronan Disrupts Cardiomyocyte Organization within 3D Fibrin-Based Hydrogels. Biophysical Journal, 2019, 116, 1340-1347.	0.2	6
50	Strong triaxial coupling and anomalous Poisson effect in collagen networks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6790-6799.	3.3	72
51	Compressive tumours cause neuronal damage. Nature Biomedical Engineering, 2019, 3, 171-172.	11.6	6
52	Sensitivity of multifrequency magnetic resonance elastography and diffusion-weighted imaging to cellular and stromal integrity of liver tissue. Journal of Biomechanics, 2019, 88, 201-208.	0.9	9
53	Inhibition of inflammatory response in human keratinocytes by magnetic nanoparticles functionalized with PBP10 peptide derived from the PIP2-binding site of human plasma gelsolin. Journal of Nanobiotechnology, 2019, 17, 22.	4.2	25
54	Mechanosensing at Cellular Interfaces. Langmuir, 2019, 35, 7509-7519.	1.6	36

#	Article	lF	CITATIONS
55	Soft Hyaluronic Gels Promote Cell Spreading, Stress Fibers, Focal Adhesion, and Membrane Tension by Phosphoinositide Signaling, Not Traction Force. ACS Nano, 2019, 13, 203-214.	7.3	56
56	Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2686-E2695.	3.3	183
57	Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nature Communications, 2018, 9, 449.	5.8	301
58	Similar Biophysical Abnormalities in Glomeruli and Podocytes from Two Distinct Models. Journal of the American Society of Nephrology: JASN, 2018, 29, 1501-1512.	3.0	23
59	Salmon fibrinogen and chitosan scaffold for tissue engineering: in vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine, 2018, 29, 182.	1.7	16
60	Glial Tissue Mechanics and Mechanosensing by Glial Cells. Frontiers in Cellular Neuroscience, 2018, 12, 25.	1.8	48
61	Regulation of actin assembly by PI(4,5)P2 and other inositol phospholipids: An update on possible mechanisms. Biochemical and Biophysical Research Communications, 2018, 506, 307-314.	1.0	82
62	A comparison of methods to assess cell mechanical properties. Nature Methods, 2018, 15, 491-498.	9.0	448
63	Mechanical Properties of the Cytoskeleton and Cells. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022038.	2.3	194
64	Soft Substrates Containing Hyaluronan Mimic the Effects of Increased Stiffness on Morphology, Motility, and Proliferation of Glioma Cells. Biomacromolecules, 2017, 18, 3040-3051.	2.6	70
65	Lipid Head Group Charge and Fatty Acid Configuration Dictate Liposome Mobility in Neurofilament Networks. Macromolecular Bioscience, 2017, 17, 1600229.	2.1	3
66	Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments. Methods in Enzymology, 2016, 568, 389-426.	0.4	30
67	Biochemical and Cellular Determinants of Renal Glomerular Elasticity. PLoS ONE, 2016, 11, e0167924.	1.1	30
68	Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Scientific Reports, 2016, 6, 19270.	1.6	122
69	Elasticity of fibrous networks under uniaxial prestress. Soft Matter, 2016, 12, 5050-5060.	1.2	61
70	Measuring the Stiffness of Ex Vivo Mouse Aortas Using Atomic Force Microscopy. Journal of Visualized Experiments, 2016, , .	0.2	14
71	Salmon-derived thrombin inhibits development of chronic pain through an endothelial barrier protective mechanism dependent on APC. Biomaterials, 2016, 80, 96-105.	5.7	20
72	Mechanical Properties of Intermediate Filament Proteins. Methods in Enzymology, 2016, 568, 35-57.	0.4	63

#	Article	IF	CITATIONS
73	Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics. PLoS ONE, 2016, 11, e0146588.	1.1	97
74	Synthesis and structure–activity relationships of novel cationic lipids with anti-inflammatory and antimicrobial activities. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2837-2843.	1.0	4
75	Role Played by Prx1â€Dependent Extracellular Matrix Properties in Vascular Smooth Muscle Development in Embryonic Lungs. Pulmonary Circulation, 2015, 5, 382-397.	0.8	16
76	Filamin A Mediates Wound Closure by Promoting Elastic Deformation and Maintenance of Tension in the Collagen Matrix. Journal of Investigative Dermatology, 2015, 135, 2852-2861.	0.3	19
77	The (dys)functional extracellular matrix. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3153-3164.	1.9	72
78	Bactericidal Activities of Cathelicidin LL-37 and Select Cationic Lipids against the Hypervirulent Pseudomonas aeruginosa Strain LESB58. Antimicrobial Agents and Chemotherapy, 2015, 59, 3808-3815.	1.4	42
79	Flightless I interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling. Molecular Biology of the Cell, 2015, 26, 2279-2297.	0.9	18
80	Polyelectrolyte-mediated increase of biofilm mass formation. BMC Microbiology, 2015, 15, 117.	1.3	17
81	Contact-induced apical asymmetry drives the thigmotropic responses of <i>Candida albicans</i> hyphae. Cellular Microbiology, 2015, 17, 342-354.	1.1	56
82	A comparison of hyperelastic constitutive models applicable to brain and fat tissues. Journal of the Royal Society Interface, 2015, 12, 20150486.	1.5	168
83	Bactericidal Activity of Ceragenin CSA-13 in Cell Culture and in an Animal Model of Peritoneal Infection. Antimicrobial Agents and Chemotherapy, 2015, 59, 6274-6282.	1.4	48
84	Enhancement of Pulmozyme activity in purulent sputum by combination with poly-aspartic acid or gelsolin. Journal of Cystic Fibrosis, 2015, 14, 587-593.	0.3	18
85	Inelastic behaviour of collagen networks in cell–matrix interactions and mechanosensation. Journal of the Royal Society Interface, 2015, 12, 20141074.	1.5	69
86	Compression stiffening of brain and its effect on mechanosensing by glioma cells. New Journal of Physics, 2014, 16, 075002.	1.2	148
87	Substrate stiffness regulates solubility of cellular vimentin. Molecular Biology of the Cell, 2014, 25, 87-94.	0.9	67
88	Lateral boundary mechanosensing by adherent cells in a collagen gel system. Biomaterials, 2014, 35, 1138-1149.	5.7	53
89	Structural Basis for PI(4)P-Specific Membrane Recruitment of the Legionella pneumophila Effector DrrA/SidM. Structure, 2014, 22, 397-408.	1.6	48
90	Counterion-mediated cluster formation by polyphosphoinositides. Chemistry and Physics of Lipids, 2014, 182, 38-51.	1.5	42

#	Article	IF	CITATIONS
91	Cytoplasmic Transport: Bacteria Turn to Glass Unless Kicked. Current Biology, 2014, 24, R226-R228.	1.8	2
92	Counterion-mediated pattern formation in membranes containing anionic lipids. Advances in Colloid and Interface Science, 2014, 208, 177-188.	7.0	33
93	Augmentation of integrin-mediated mechanotransduction by hyaluronic acid. Biomaterials, 2014, 35, 71-82.	5.7	97
94	Polyelectrolyte properties of filamentous biopolymers and their consequences in biological fluids. Soft Matter, 2014, 10, 1439.	1.2	91
95	Clamping Down on Tumor Proliferation. Biophysical Journal, 2014, 107, 1775-1776.	0.2	2
96	Vimentin Enhances Cell Elastic Behavior and Protects against Compressive Stress. Biophysical Journal, 2014, 107, 314-323.	0.2	154
97	From tissue mechanics to transcription factors. Differentiation, 2013, 86, 112-120.	1.0	131
98	Effects of non-linearity on cell–ECM interactions. Experimental Cell Research, 2013, 319, 2481-2489.	1.2	95
99	Non-affine deformations in polymer hydrogels. Soft Matter, 2012, 8, 8039.	1.2	123
100	α-Catenin Localization and Sarcomere Self-Organization on N-Cadherin Adhesive Patterns Are Myocyte Contractility Driven. PLoS ONE, 2012, 7, e47592.	1.1	13
101	Nonaffine Displacements in Flexible Polymer Networks. Macromolecules, 2011, 44, 1671-1679.	2.2	77
102	Mechanisms of mechanical signaling in development and disease. Journal of Cell Science, 2011, 124, 9-18.	1.2	398
103	Potential of ceragenin CSA-13 and its mixture with pluronic F-127 as treatment of topical bacterial infections. Journal of Applied Microbiology, 2011, 110, 229-238.	1.4	47
104	Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. American Journal of Physiology - Renal Physiology, 2011, 301, G110-G118.	1.6	276
105	Lack of Collagen XVIII Long Isoforms Affects Kidney Podocytes, whereas the Short Form Is Needed in the Proximal Tubular Basement Membrane. Journal of Biological Chemistry, 2011, 286, 7755-7764.	1.6	38
106	Rheology of Soft Materials. Annual Review of Condensed Matter Physics, 2010, 1, 301-322.	5.2	305
107	Mechanically Induced Reactive Gliosis Causes ATP-Mediated Alterations in Astrocyte Stiffness. Journal of Neurotrauma, 2009, 26, 789-797.	1.7	56
108	The hard life of soft cells. Cytoskeleton, 2009, 66, 597-605.	4.4	150

#	Article	IF	CITATIONS
109	Fibrin gels and their clinical and bioengineering applications. Journal of the Royal Society Interface, 2009, 6, 1-10.	1.5	537
110	Nonlinear Elasticity of Stiff Filament Networks: Strain Stiffening, Negative Normal Stress, and Filament Alignment in Fibrin Gels. Journal of Physical Chemistry B, 2009, 113, 3799-3805.	1.2	166
111	Non-Linear Elasticity of Extracellular Matrices Enables Contractile Cells to Communicate Local Position and Orientation. PLoS ONE, 2009, 4, e6382.	1.1	320
112	Rheology. Current Biology, 2008, 18, R639-R641.	1.8	28
113	Soft biological materials and their impact on cell function. Soft Matter, 2007, 3, 299-306.	1.2	731
114	Basic Rheology for Biologists. Methods in Cell Biology, 2007, 83, 1-27.	0.5	53
115	Cell Mechanics: Integrating Cell Responses to Mechanical Stimuli. Annual Review of Biomedical Engineering, 2007, 9, 1-34.	5.7	545
116	Negative normal stress in semiflexible biopolymer gels. Nature Materials, 2007, 6, 48-51.	13.3	332
117	Antibacterial Peptides - A Bright Future or a False Hope. Anti-Infective Agents in Medicinal Chemistry, 2007, 6, 175-184.	0.6	7
118	Nonlinear elasticity in biological gels. Nature, 2005, 435, 191-194.	13.7	1,394
119	The Role of Matrix Stiffness in Hepatic Stellate Cell Activation and Liver Fibrosis. Wound Repair and Regeneration, 2005, 13, A24-A24.	1.5	6
120	Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science, 2005, 310, 1139-1143.	6.0	5,376
121	Cytoskeletal regulation: rich in lipids. Nature Reviews Molecular Cell Biology, 2004, 5, 658-666.	16.1	204
122	Dealing with mechanics: mechanisms of force transduction in cells. Trends in Biochemical Sciences, 2004, 29, 364-370.	3.7	248
123	Gelsolin — evidence for a role in turnover of junction-related actin filaments in Sertoli cells. Journal of Cell Science, 2002, 115, 499-505.	1.2	55
124	Induction of Apoptosis by Gelsolin Truncates. Annals of the New York Academy of Sciences, 1999, 886, 217-220.	1.8	9
125	Fluorescent phosphoinositide derivatives reveal specific binding of gelsolin and other actin regulatory proteins to mixed lipid bilayers. FEBS Journal, 1999, 263, 85-92.	0.2	42
126	The Polyelectrolyte Behavior of Actin Filaments:  A 25Mg NMR Study. Biochemistry, 1999, 38, 7219-7226.	1.2	33

#	Article	IF	Citations
127	Enhancement of phosphoinositide 3-kinase (PI 3-kinase) activity by membrane curvature and inositol-phospholipid-binding peptides. FEBS Journal, 1998, 258, 846-853.	0.2	64
128	Electrostatically Induced Polyelectrolyte Association of Rodlike Virus Particles. Physical Review Letters, 1998, 81, 5465-5468.	2.9	80
129	Reptation of Microtubules in F-Actin Networks : Effects of Filament Stiffness and Network Topology on Reptation Dynamics. Materials Research Society Symposia Proceedings, 1997, 489, 27.	0.1	0
130	Tactoidal Granules in Concentrated Actin Gels: A Solidlike State of Protein Filaments. Materials Research Society Symposia Proceedings, 1997, 489, 33.	0.1	0
131	Electrostatically Induced Bundle Formation of Rodlike Polyelectrolytes: Comparison of Predictions from Monte Carlo Simulations with Experiments on Fd And M13 Virus Particles Materials Research Society Symposia Proceedings, 1997, 489, 61.	0.1	0
132	Strain hardening of fibrin gels and plasma clots. Rheologica Acta, 1997, 36, 262-268.	1.1	114
133	Structure of the profilin-poly-L-proline complex involved in morphogenesis and cytoskeletal regulation. Nature Structural and Molecular Biology, 1997, 4, 953-960.	3.6	154
134	Characterization of Gelsolin Truncates that Inhibit Actin Depolymerization by Severing Activity of Gelsolin and Cofilin. FEBS Journal, 1997, 248, 834-839.	0.2	15
135	Strain hardening of fibrin gels and plasma clots. Rheologica Acta, 1997, 36, 262-268.	1.1	11
136	Counterion induced bundle formation of rodlike polyelectrolytes. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 796-806.	0.9	129
137	Thymosin \hat{l}^2 15: A novel regulator of tumor cell motility upregulated in metastatic prostate cancer. Nature Medicine, 1996, 2, 1322-1328.	15.2	150
138	Use of a gel-forming dipeptide derivative as a carrier for antigen presentation. Journal of Peptide Science, 1995, 1, 371-378.	0.8	127
139	Functions of [His321]Gelsolin Isolated from a Flat Revertant of <i>ras</i> â€Transformed Cells. FEBS Journal, 1995, 229, 615-620.	0.2	3
140	Distinct Biochemical Characteristics of the Two Human Profilin Isoforms. FEBS Journal, 1995, 229, 621-628.	0.2	23
141	A slice of the actin. Nature, 1993, 364, 675-676.	13.7	10
142	Effects of actin filaments on fibrin clot structure and lysis. Blood, 1992, 80, 928-936.	0.6	33
143	Effects of actin filaments on fibrin clot structure and lysis. Blood, 1992, 80, 928-936.	0.6	1
144	Kinetics of formation of fibrin oligomers. III. Ligation kinetics concurrent with and subsequent to oligomer assembly. Biopolymers, 1984, 23, 127-138.	1.2	10

#	Article	IF	CITATIONS
145	Polymerization of fibrin: Analysis of light-scattering data and relation to a peptide release. Biopolymers, 1983, 22, 2017-2019.	1.2	17
146	Rheology of Fibrin Clots. VI. Stress Relaxation, Creep, and Differential Dynamic Modulus of Fine Clots in Large Shearing Deformations. Journal of Rheology, 1983, 27, 135-153.	1.3	86
147	Kinetics of formation of fibrin oligomers. I. Theory. Biopolymers, 1982, 21, 2253-2264.	1.2	33
148	Kinetics of formation of fibrin oligomers. II. Size distributions of ligated oligomers. Biopolymers, 1982, 21, 2265-2277.	1.2	45
149	Quasielastic light scattering measurements of self-diffusion and mutual diffusion in gelatin solutions and gels. Polymer Bulletin, 1981, 6, 13.	1.7	18
150	Dynamic Viscoelastic Properties of Gelatin Gels in Glycerolâ€Water Mixtures. Journal of Rheology, 1980, 24, 87-97.	1.3	27