List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4068245/publications.pdf Version: 2024-02-01

CHDIS XII

#	Article	IF	CITATIONS
1	Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 481.	2.1	2,065
2	Design of Organic Molecules with Large Two-Photon Absorption Cross Sections. , 1998, 281, 1653-1656.		2,047
3	In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photonics, 2013, 7, 205-209.	31.4	1,225
4	Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Applied Optics, 1998, 37, 7352.	2.1	605
5	Deep tissue multiphoton microscopy using longer wavelength excitation. Optics Express, 2009, 17, 13354.	3.4	567
6	In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nature Methods, 2017, 14, 388-390.	19.0	434
7	Simultaneous spatial and temporal focusing of femtosecond pulses. Optics Express, 2005, 13, 2153.	3.4	433
8	In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. Journal of Biomedical Optics, 2011, 16, 1.	2.6	353
9	Nanotools for Neuroscience and Brain Activity Mapping. ACS Nano, 2013, 7, 1850-1866.	14.6	323
10	Three-photon imaging of mouse brain structure and function through the intact skull. Nature Methods, 2018, 15, 789-792.	19.0	257
11	Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17598-17603.	7.1	250
12	All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion. Optics Express, 2005, 13, 7872.	3.4	151
13	Soliton Self-Frequency Shift: Experimental Demonstrations and Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 713-723.	2.9	133
14	Measurements of multiphoton action cross sections for multiphoton microscopy. Biomedical Optics Express, 2014, 5, 3427.	2.9	132
15	Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation. Neuron, 2016, 91, 851-862.	8.1	129
16	Multiphoton excitation crossâ€sections of molecular fluorophores. Bioimaging, 1996, 4, 198-207.	1.3	128
17	In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems. Biomedical Optics Express, 2012, 3, 1077.	2.9	126
18	Generation of intense 100  fs solitons tunable from 2 to 43  μm in fluoride fiber. Optica, 2016	5, 9, 3948.	126

#	Article	lF	CITATIONS
19	Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging. Optics Express, 2008, 16, 21598.	3.4	117
20	Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmission. Optics Letters, 2002, 27, 1619.	3.3	108
21	Simultaneous spatial and temporal focusing for axial scanning. Optics Express, 2006, 14, 12243.	3.4	104
22	Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning. Optics Express, 2012, 20, 8939.	3.4	97
23	Frequency-multiplexed in vivo multiphoton phosphorescence lifetime microscopy. Nature Photonics, 2013, 7, 33-37.	31.4	97
24	Three-photon neuronal imaging in deep mouse brain. Optica, 2020, 7, 947.	9.3	97
25	Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters. Optics Letters, 2003, 28, 986.	3.3	93
26	Numerical analysis of light propagation in image fibers or coherent fiber bundles. Optics Express, 2007, 15, 2151.	3.4	93
27	An adaptive excitation source for high-speed multiphoton microscopy. Nature Methods, 2020, 17, 163-166.	19.0	91
28	Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence. Applied Optics, 1997, 36, 397.	2.1	89
29	Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip. Journal of Applied Physics, 1999, 85, 1294-1301.	2.5	89
30	Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube. Optics Letters, 2002, 27, 2076.	3.3	89
31	Multiwavelength pulse generator using time-lens compression. Optics Letters, 2004, 29, 1470.	3.3	89
32	Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain. Science Advances, 2021, 7, .	10.3	89
33	Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation. Optics Letters, 1995, 20, 2372.	3.3	87
34	Large tunable optical delays via self-phase modulation and dispersion. Optics Express, 2006, 14, 12022.	3.4	84
35	Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy. Applied Physics Letters, 2011, 99, .	3.3	82
36	Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain. Biomedical Optics Express, 2018, 9, 3534.	2.9	80

#	Article	IF	CITATIONS
37	Demonstration of soliton self-frequency shift below 1300nm in higher-order mode, solid silica-based fiber. Optics Letters, 2007, 32, 340.	3.3	77
38	Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. ELife, 2020, 9, .	6.0	76
39	In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope. Journal of Biomedical Optics, 2012, 17, 1.	2.6	71
40	Advanced Fiber Soliton Sources for Nonlinear Deep Tissue Imaging in Biophotonics. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 50-60.	2.9	70
41	Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence. Optics Express, 2015, 23, 31472.	3.4	70
42	Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy. Biomedical Optics Express, 2012, 3, 1972.	2.9	67
43	Deep three-photon imaging of the brain in intact adult zebrafish. Nature Methods, 2020, 17, 605-608.	19.0	64
44	Multiphoton excitation cross-sections of molecular fluorophores. Bioimaging, 1996, 4, 198-207.	1.3	62
45	Two-photon optical beam induced current imaging through the backside of integrated circuits. Applied Physics Letters, 1997, 71, 2578-2580.	3.3	60
46	Suppression of intrachannel four-wave-mixing–induced ghost pulses in high-speed transmissions by phase inversion between adjacent marker blocks. Optics Letters, 2002, 27, 1177.	3.3	60
47	Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy. Biomedical Optics Express, 2018, 9, 2304.	2.9	60
48	Multiphoton microscopy for structure identification in human prostate and periprostatic tissue: implications in prostate cancer surgery. BJU International, 2011, 108, 1421-1429.	2.5	59
49	Rapid volumetric imaging with Bessel-Beam three-photon microscopy. Biomedical Optics Express, 2018, 9, 1992.	2.9	58
50	Multiphoton-Excited Visible Emission by Serotonin Solutions. Photochemistry and Photobiology, 1997, 65, 931-936.	2.5	53
51	Microscopic sensors using optical wireless integrated circuits. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9173-9179.	7.1	53
52	Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device. Biomedical Optics Express, 2014, 5, 2526.	2.9	50
53	Synchronized time-lens source for coherent Raman scattering microscopy. Optics Express, 2010, 18, 24019.	3.4	48
54	Time-domain multimode dispersion measurement in a higher-order-mode fiber. Optics Letters, 2012, 37, 347.	3.3	48

#	Article	IF	CITATIONS
55	Generation of 35 nJ femtosecond pulses from a continuous-wave laser without mode locking. Optics Letters, 2007, 32, 1408.	3.3	47
56	Dispersion measurement of tapered air-silica microstructure fiber by white-light interferometry. Applied Optics, 2002, 41, 4467.	2.1	46
57	Multiphoton Excitation of Molecular Fluorophores and Nonlinear Laser Microscopy. , 2002, , 471-540.		45
58	Dispersion compensation in three-photon fluorescence microscopy at 1,700 nm. Biomedical Optics Express, 2015, 6, 1392.	2.9	42
59	Investigation of the long wavelength limit of soliton self-frequency shift in a silica fiber. Optics Express, 2018, 26, 19637.	3.4	42
60	Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides. Optics Express, 2008, 16, 10349.	3.4	40
61	Multifocal multiphoton endoscope. Optics Letters, 2012, 37, 1349.	3.3	40
62	Three-photon excited fluorescence imaging of unstained tissue using a GRIN lens endoscope. Biomedical Optics Express, 2013, 4, 652.	2.9	40
63	In vivo label-free confocal imaging of the deep mouse brain with long-wavelength illumination. Biomedical Optics Express, 2018, 9, 6545.	2.9	40
64	Wavelength-tunable high-energy soliton pulse generation from a large-mode-area fiber pumped by a time-lens source. Optics Letters, 2011, 36, 942.	3.3	39
65	Identification of Spermatogenesis With Multiphoton Microscopy: An Evaluation in a Rodent Model. Journal of Urology, 2011, 186, 2487-2492.	0.4	39
66	Comparison of one- and two-photon optical beam-induced current imaging. Journal of Applied Physics, 1999, 86, 2226-2231.	2.5	37
67	1 μs tunable delay using parametric mixing and optical phase conjugation in Si waveguides. Optics Express, 2009, 17, 7004.	3.4	37
68	Femtosecond laser bone ablation with a high repetition rate fiber laser source. Biomedical Optics Express, 2015, 6, 32.	2.9	37
69	Multiphoton Tomographic Imaging: A Potential Optical Biopsy Tool for Detecting Gastrointestinal Inflammation and Neoplasia. Cancer Prevention Research, 2012, 5, 1280-1290.	1.5	36
70	The effects of randomly occurring nonuniformities on propagation in photonic crystal fibers. Optics Express, 2005, 13, 2799.	3.4	35
71	Generation of femtosecond pulses at 1350 nm by ÄŒerenkov radiation in higher-order-mode fiber. Optics Letters, 2007, 32, 1053.	3.3	34
72	Short-Wave Infrared Confocal Fluorescence Imaging of Deep Mouse Brain with a Superconducting Nanowire Single-Photon Detector. ACS Photonics, 2021, 8, 2800-2810.	6.6	34

#	Article	IF	CITATIONS
73	Hyper-Rayleigh and Hyper-Raman Scattering Background of Liquid Water in Two-Photon Excited Fluorescence Detection. Analytical Chemistry, 1997, 69, 1285-1287.	6.5	33
74	Ultrafast optical delay line by use of a time-prism pair. Optics Letters, 2005, 30, 99.	3.3	31
75	Intermodal four-wave mixing in a higher-order-mode fiber. Applied Physics Letters, 2012, 101, 161106.	3.3	31
76	Compensation of self-phase modulation in fiber-based chirped-pulse amplification systems. Optics Letters, 2006, 31, 1756.	3.3	30
77	High speed multiphoton axial scanning through an optical fiber in a remotely scanned temporal focusing setup. Biomedical Optics Express, 2011, 2, 80.	2.9	29
78	Ultrafast optical delay line using soliton propagation between a time-prism pair. Optics Express, 2005, 13, 1138.	3.4	27
79	Ultralong continuously tunable parametric delays via a cascading discrete stage. Optics Express, 2010, 18, 333.	3.4	27
80	Higher-order-mode fiber optimized for energetic soliton propagation. Optics Letters, 2012, 37, 3459.	3.3	27
81	Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy. Biomedical Optics Express, 2014, 5, 1768.	2.9	27
82	Impact of the emission wavelengths on in vivo multiphoton imaging of mouse brains. Biomedical Optics Express, 2019, 10, 1905.	2.9	26
83	Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes. Nature Immunology, 2022, 23, 330-340.	14.5	26
84	Tunable dispersion compensation by a rotating cylindrical lens. Optics Letters, 2009, 34, 1195.	3.3	25
85	Use of a lensed fiber for a large-field-of-view, high-resolution, fiber-scanning microendoscope. Optics Letters, 2012, 37, 881.	3.3	25
86	Intermodal ÄŒerenkov radiation in a higher-order-mode fiber. Optics Letters, 2012, 37, 4410.	3.3	25
87	Generation of high repetition rate femtosecond pulses from a CW laser by a time-lens loop. Optics Express, 2009, 17, 6584.	3.4	21
88	Dual modality endomicroscope with optical zoom capability. Biomedical Optics Express, 2013, 4, 1494.	2.9	21
89	Fiber-delivered picosecond source for coherent Raman scattering imaging. Optics Letters, 2011, 36, 4233.	3.3	20
90	Fabrication of Injectable Micro-Scale Opto- Electronically Transduced Electrodes (MOTEs) for Physiological Monitoring. Journal of Microelectromechanical Systems, 2020, 29, 720-726.	2.5	20

#	Article	IF	CITATIONS
91	Miniature varifocal objective lens for endomicroscopy. Optics Letters, 2013, 38, 3103.	3.3	19
92	Analysis of soliton collisions in a wavelength-division-multiplexed dispersion-managed soliton transmission system. Optics Letters, 2002, 27, 1303.	3.3	18
93	Independent core propagation in two-core photonic crystal fibers resulting from structural nonuniformities. Optics Express, 2005, 13, 10336.	3.4	18
94	Two-photon fluorescence imaging of intracellular hydrogen peroxide with chemoselective fluorescent probes. Journal of Biomedical Optics, 2013, 18, 106002.	2.6	18
95	Timeâ€lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis. Journal of Biophotonics, 2013, 6, 815-820.	2.3	18
96	Imaging deeper than the transport mean free path with multiphoton microscopy. Biomedical Optics Express, 2022, 13, 452.	2.9	18
97	Multiphoton gradient index endoscopy for evaluation of diseased human prostatic tissue <i>ex vivo</i> . Journal of Biomedical Optics, 2014, 19, 116011.	2.6	17
98	The Role of Systematic and Targeted Biopsies in Light of Overlap on Magnetic Resonance Imaging Ultrasound Fusion Biopsy. European Urology Oncology, 2018, 1, 263-267.	5.4	17
99	Neurophotonic Tools for Microscopic Measurements and Manipulation: Status Report. Neurophotonics, 2022, 9, 013001.	3.3	17
100	Fiber-array-based detection scheme for single-shot pulse contrast characterization. Optics Letters, 2008, 33, 1969.	3.3	16
101	Enhanced axial confinement of sum-frequency generation in a temporal focusing setup. Optics Letters, 2009, 34, 1786.	3.3	16
102	GCaMP6 ΔF/F dependence on the excitation wavelength in 3-photon and 2-photon microscopy of mouse brain activity. Biomedical Optics Express, 2019, 10, 3343.	2.9	16
103	Multiphoton Excitation of Fluorescent Probes. Cold Spring Harbor Protocols, 2015, 2015, pdb.top086116.	0.3	15
104	Correcting the limited view in opticalâ€resolution photoacoustic microscopy. Journal of Biophotonics, 2018, 11, e201700196.	2.3	15
105	Multiphoton imaging provides a superior optical biopsy to that of confocal laser endomicroscopy imaging for colorectal lesions. Endoscopy, 2019, 51, 174-178.	1.8	15
106	Nonlinear distortion free fiber-based chirped pulse amplification with self-phase modulation up to 2Ï€. Optics Express, 2007, 15, 2530.	3.4	14
107	GHz Ultrasonic Chip-Scale Device Induces Ion Channel Stimulation in Human Neural Cells. Scientific Reports, 2020, 10, 3075.	3.3	14
108	Endoscope lens with dual fields of view and resolutions for multiphoton imaging. Optics Letters, 2010, 35, 2735.	3.3	13

#	Article	IF	CITATIONS
109	Nonresonant background suppression for coherent anti-Stokes Raman scattering microscopy using a multi-wavelength time-lens source. Optics Express, 2016, 24, 26687.	3.4	13
110	Multiphoton imaging of neural structure and activity in Drosophila through the intact cuticle. ELife, 2022, 11, .	6.0	13
111	Three-Photon Adaptive Optics for Mouse Brain Imaging. Frontiers in Neuroscience, 2022, 16, .	2.8	13
112	High sensitivity third-order autocorrelation measurement by intensity modulation and third harmonic detection. Optics Letters, 2011, 36, 2372.	3.3	12
113	In Vivo Three-photon Calcium Imaging of Brain Activity from Layer 6 Neurons in Mouse Brain. , 2014, , .		12
114	Transverse Field Dispersion in the Generalized Nonlinear SchrĶdinger Equation: Four Wave Mixing in a Higher Order Mode Fiber. Journal of Lightwave Technology, 2013, 31, 3425-3431.	4.6	9
115	Multi-color background-free coherent anti-Stokes Raman scattering microscopy using a time-lens source. Optics Express, 2018, 26, 34474.	3.4	9
116	Generation of Cerenkov radiation at 850 nm in higher-order-mode fiber. Optics Express, 2011, 19, 8774.	3.4	8
117	Multiphoton microscopy to identify and characterize the transition zone in a mouse model of Hirschsprung disease. Journal of Pediatric Surgery, 2013, 48, 1288-1293.	1.6	8
118	Direct visualization of functional heterogeneity in hepatobiliary metabolism using 6-CFDA as model compound. Biomedical Optics Express, 2016, 7, 3574.	2.9	7
119	Quantitative Comparison of Two-photon and Three-photon Activity Imaging of GCaMP6s-labeled Neurons in vivo in the Mouse Brain. , 2017, , .		7
120	Real-time in vivo optical biopsy using confocal laser endomicroscopy to evaluate distal margin in situ and determine surgical procedure in low rectal cancer. Surgical Endoscopy and Other Interventional Techniques, 2019, 33, 2332-2338.	2.4	7
121	Two-photon photocurrent imaging of vertical cavity surface emitting lasers. Applied Physics Letters, 2000, 76, 1510-1512.	3.3	6
122	Two-photon Shack–Hartmann wavefront sensor. Optics Letters, 2017, 42, 1141.	3.3	6
123	Shot noise limits on binary detection in multiphoton imaging. Biomedical Optics Express, 2021, 12, 7033.	2.9	5
124	Background Reduction with Two-Color Two-Beam Multiphoton Excitation. , 2008, , .		4
125	In vivo deep tissue imaging with long wavelength multiphoton excitation. Proceedings of SPIE, 2010, , .	0.8	4
126	Fiber delivered two-color picosecond source through nonlinear spectral transformation for coherent Raman scattering imaging. Applied Physics Letters, 2012, 100, 071106.	3.3	4

#	Article	IF	CITATIONS
127	Dual Modality Microendoscope with Optical Zoom Capability. , 2012, , .		4
128	In vivo three-photon imaging of subcortical structures of an intact mouse brain using quantum dots. , 2013, , .		4
129	Multiple Regions of Interest on Multiparametric Magnetic Resonance Imaging are Not Associated with Increased Detection of Clinically Significant Prostate Cancer on Fusion Biopsy. Journal of Urology, 2018, 200, 559-563.	0.4	4
130	Simultaneous Two- and Three-photon Imaging of Multilayer Neural Activities with Remote Focusing. , 2019, , .		4
131	Deep-Tissue Three-Photon Fluorescence Microscopy in Intact Mouse and Zebrafish Brain. Journal of Visualized Experiments, 2022, , .	0.3	4
132	Spatially resolved measurements of ballistic and total transmission in microscale tissue samples from 450 nm to 1624 nm. Biomedical Optics Express, 2022, 13, 438.	2.9	4
133	Large Tunable Optical Delays via Self-Phase Modulation and Dispersion. , 2007, , .		3
134	Special Section Guest Editorial: Multiphoton Microscopy: Technical Innovations, Biological Applications, and Clinical Diagnostics. Journal of Biomedical Optics, 2013, 18, 031101.	2.6	3
135	Multi-color femtosecond source for simultaneous excitation of multiple fluorescent proteins in two-photon fluorescence microscopy. Proceedings of SPIE, 2013, , .	0.8	3
136	Multiphoton Modulation Microscopy for High-Speed Deep Biological Imaging. , 2010, , .		3
137	Tunable megawatt soliton pulse generation covering the optimum wavelength window for tissue penetration. , 2013, , .		3
138	Adaptive Optics in Three-Photon Fluorescence Microscopy. , 2015, , .		3
139	Whole Brain Optical Access in Adult Vertebrates: Two- and Three-Photon Imaging in a Miniature Fish, Danionella priapus. , 2020, , .		3
140	1 μs tunable delay using parametric mixing and optical phase conjugation in Si waveguides: reply. Optics Express, 2009, 17, 16029.	3.4	2
141	All-fiber, versatile picosecond time-lens light source and its application to Cerenkov radiation generation in higher order mode fiber. , 2010, , .		2
142	Miniaturized fiber raster scanner for endoscopy. Proceedings of SPIE, 2011, , .	0.8	2
143	Introduction to the bio-optics: design and application. Biomedical Optics Express, 2015, 6, 4899.	2.9	2
144	Nonlinear adaptive optics: aberration correction in three photon fluorescence microscopy for mouse		2

brain imaging. , 2017, , .

#	Article	IF	CITATIONS
145	Intravital Multiphoton Endoscopy. , 2014, , 305-370.		2
146	In Vivo Deep Penetration Three-Photon Imaging of Mouse Brain through an Unthinned, Intact Skull. , 2013, , .		2
147	Intravital imaging of the murine subventricular zone with three photon microscopy. Cerebral Cortex, 2022, 32, 3057-3067.	2.9	2
148	Label-free Map of Adult Danionella dracula Brain for in vivo Navigation Using Third Harmonic Generation Microscopy. , 2021, , .		2
149	Soliton self-frequency shift below 1300 nm in higher-order-mode, solid silica-based fiber. , 2006, , .		1
150	Simultaneous spatial and temporal focusing for remote axial scanning in wide field imaging. , 2006, , .		1
151	Analysis and measurement of light propagation in coherent fiber bundles. , 2007, , .		1
152	Comparison of two-photon imaging depths with 775 nm excitation and 1300 nm excitation. , 2009, , .		1
153	Tunable high-energy soliton pulse generation from a large-mode-area fiber pumped by a picosecond time-lens source. , 2011, , .		1
154	All fiber 1064-nm time-lens source for coherent anti-Stokes Raman scattering and stimulated Raman scattering microscopy. , 2011, , .		1
155	Instrumentation for exact packet timings in networks. , 2011, , .		1
156	Fiber delivered two-color picosecond source for coherent Raman scattering imaging. Proceedings of SPIE, 2012, , .	0.8	1
157	Spectroscopic SRS imaging with a time-lens source synchronized to a femtosecond pulse shaper. , 2013, , .		1
158	Characterization and adaptive compression of a multi-soliton laser source. Optics Express, 2017, 25, 320.	3.4	1
159	In vivo Shortwave Infrared (SWIR) Confocal Fluorescence Imaging of Deep Mouse Brain with a Single-Photon Superconducting Nanowire Detector. , 2021, , .		1
160	Memorial Viewpoint for Watt W. Webb: An Experimentalist's Experimentalist. Journal of Physical Chemistry B, 2021, 125, 2793-2795.	2.6	1
161	Theoretical and experimental investigation of the depth limit of three-photon microscopy. , 2021, , .		1
162	Closed-loop wavefront sensing and correction in the mouse brain with computed optical coherence microscopy. Biomedical Optics Express, 2021, 12, 4934.	2.9	1

#	Article	IF	CITATIONS
163	In vivo two-photon imaging of cortical vasculature in mice to 1.5-mm depth with 1280-nm excitation. , 2011, , .		1
164	7.34-μs Continuously Tunable Parametric Delay. , 2010, , .		1
165	Two-photon Imaging of Intracellular Hydrogen Peroxide with a Chemoselective Fluorescence Probe. , 2011, , .		1
166	Focusing of the LPO2 Mode from a Higher Order Mode Fiber. , 2011, , .		1
167	In Vivo, Deep Tissue Three-Photon Imaging at the 1700-nm Spectral Window. , 2012, , .		1
168	A Miniature Endomicroscope with Optical Zoom Capability. , 2013, , .		1
169	Three-Photon Fluorescence Adaptive Optics for In-Vivo Mouse Brain Imaging. , 2016, , .		1
170	Generation of high-pulse energy, wavelength-tunable, femtosecond pulse at 1600-2520 nm and its second-harmonic for multiphoton imaging. , 2017, , .		1
171	In vivo three-photon imaging of deep mouse cerebellum. , 2018, , .		1
172	<title>Multiphoton fluorescence excitation: new spectral windows for biological imaging</title> . , 1996, 2819, 274.		0
173	<title>Dispersion measurement of tapered air-silica microstructure fiber by white-light interferometry</title> ., 2001, 4579, 251.		0
174	<title>Dispersion-managed solitons and their applications in ultra-long-haul transmissions</title> ., 2001,,.		0
175	Compensation of self-phase modulation in fiber-based chirped-pulse amplification systems. , 2006, , .		0
176	Application of telecom technologies to optical instrumentation. , 2006, 6388, 203.		0
177	Ceneration of femtosecond pulses at 1350 nm by Cherenkov radiation in higher-order-mode fiber. , 2007, , .		0
178	Nonlinear distortion free fiber-based chirped pulse amplification with self-phase modulation up to 2Å; , 2007, , .		0
179	Generation of energetic wavelength tunable femtosecond pulses in higher-order-mode fiber. , 2007, , .		0
180	Looped time-lens compression for generation of 3.5 nJ femtosecond pulses from a CW laser. , 2007, , .		0

#	Article	IF	CITATIONS
181	Numerical analysis of the role of core-clad index contrast in a multicore fiber bundle. , 2007, , .		Ο
182	Generation of energetic wavelength tunable femtosecond pulses in higher-order-mode fiber. AIP Conference Proceedings, 2008, , .	0.4	0
183	Technology development for deep tissue multiphoton imaging. , 2009, , .		0
184	Kilohertz Tunable Dispersion Compensation with a Bimorph Piezo Deformable Mirror. , 2009, , .		0
185	Generation of energetic wavelength tunable femtosecond pulses in higher-order-mode fiber. , 2009, , .		0
186	Generation of Cerenkov Radiation at 850 nm in Higher-Order-Mode Fiber. , 2010, , .		0
187	High Speed Axial Scanning in a Temporal Focusing Setup with Piezo Bimorph Mirror Dispersion Tuning. , 2010, , .		0
188	Short pulse generation using nonlinear fiber optics for biomedical imaging applications. , 2010, , .		0
189	Multiphoton imaging for deep tissue penetration and clinical endoscopy. Proceedings of SPIE, 2011, , .	0.8	0
190	Epifluorescence light collection for multiphoton microscopic endoscopy. Proceedings of SPIE, 2011, , .	0.8	0
191	Novel light sources for biophotonics imaging. , 2011, , .		0
192	In Vivo Three-Photon Microscopy of Subcortical Structures within an Intact Mouse Brain. , 2012, , .		0
193	High-energy soliton pulse generation in a photonic crystal rod and its application to three-photon microscopy. , 2012, , .		0
194	High resolution, large field-of-view endomicroscope with optical zoom capability. , 2013, , .		0
195	Higher-order-mode fiber optimized for energetic soliton propagation: erratum. Optics Letters, 2013, 38, 3185.	3.3	0
196	Multiphoton GRIN Endoscope for Evaluation of Human Prostatic Tissue Ex Vivo. , 2014, , .		0
197	Experimental Demonstration of Soliton Cascade in Higher-Order-Mode Fibers. , 2014, , .		0
198	Multiphoton Imaging of Mouse Brain In Vivo. , 2014, , .		0

#	Article	IF	CITATIONS
199	Laser Sources for Deep Tissue Multiphoton Imaging. , 2014, , .		0
200	Experimental Demonstration of Soliton Cascade in Higher-Order-Mode Fibers. IEEE Photonics Technology Letters, 2014, 26, 301-304.	2.5	0
201	Multi-MW Soliton Pulse Generation at 1700 nm in a Photonic Crystal Rod. , 2014, , .		0
202	In vivo Three Photon Imaging of Neuronal Activities from Hippocampus in Intact Mouse Brain. Microscopy and Microanalysis, 2015, 21, 1721-1722.	0.4	0
203	In vivo multiphoton imaging of mouse brain. , 2015, , .		0
204	In Vivo Femtosecond Ablation and Imaging in Bone with a High Repetition Rate Source. , 2015, , .		0
205	Dispersion Compensation in Three-Photon Fluorescence Microscopy at 1,700 nm for in vivo Imaging. , 2015, , .		0
206	In vivo three-photon activity imaging of GCaMP6-labeled neurons in deep cortex and the hippocampus of the mouse brain. Proceedings of SPIE, 2017, , .	0.8	0
207	In vivo 3-photon Imaging of the Mouse Brain. , 2017, , .		0
208	Dynamic visualization of the recovery of mouse hepatobiliary metabolism to acetaminophenâ€overdose damage. Journal of Biophotonics, 2019, 12, e201800296.	2.3	0
209	Simultaneous multimodal optical coherence and three-photon microscopy of the mouse brain in the 1700 nm optical window in vivo. , 2021, , .		0
210	Effects of Refractive-Index Mismatch and Scattering on Simultaneous Spatial and Temporal Focusing. , 2007, , .		0
211	Simultaneous Spatial and Temporal Focusing in Nonlinear Microscopy. , 2007, , .		0
212	Tunable Dispersion Compensation by a Rotating Cylindrical Lens. , 2008, , .		0
213	Effects of core coupling in fiber bundle on imaging. , 2008, , .		0
214	Dispersion Engineered Higher-order Mode Fibers for Wavelength-tunable Femtosecond Pulses. , 2009, ,		0
215	Femtosecond Pulses with Tunable, High Repetition Rate Generated from a CW Laser without Mode-Locking. , 2009, , .		0

216 In vivo deep brain imaging using multiphoton microscopy. , 2010, , .

#	Article	IF	CITATIONS
217	Technology development for deep tissue multiphoton imaging. , 2010, , .		Ο
218	3 mm O.D. Raster Scanning Multiphoton Endoscope. , 2011, , .		0
219	High sensitivity, simultaneous second- and third-order autocorrelation measurement in a GaAsP photomultiplier tube. , 2011, , .		0
220	Technology Development for Multiphoton Imaging. , 2011, , .		0
221	In vivo two-photon imaging of cortical vasculature in mice to 1.5-mm depth with 1280-nm excitation. , 2011, , .		0
222	Multifocal multiphoton endoscope. , 2012, , .		0
223	Fiber delivered two-color picosecond source through nonlinear spectral transformation for coherent Raman scattering imaging. , 2012, , .		0
224	Optimization of a Higher-Order-Mode Fiber for Energetic Soliton Propagation. , 2012, , .		0
225	In vivo multiphoton imaging of subcortical structures in an intact mouse brain. , 2012, , .		0
226	Lensed Fiber Raster Scanner for a Large Field-of-View, High-Resolution Microendoscope. , 2012, , .		0
227	In Vivo Imaging of Unstained Rat Tissue Using a Multiphoton Microendoscope. , 2012, , .		0
228	Simultaneous Wavelength and Mode Conversion in a Higher-order-mode Fiber. , 2012, , .		0
229	Compact & Portable In Vivo Multiphoton GRIN Endoscope. , 2012, , .		0
230	Three-Photon Excited Fluorescence Imaging of Unstained Tissue Using a GRIN Endoscope. , 2013, , .		0
231	Frequency Multiplexed in vivo Multiphoton Phosphorescence Lifetime Microscopy. , 2013, , .		0
232	Measurements of Two-, Three-, and Four-Photon Excitation Action Cross Sections. , 2014, , .		0
233	In Vivo Multiphoton Imaging of Mouse Brain. , 2015, , .		0
234	Tunable dual color source for multiphoton imaging. , 2015, , .		0

#	Article	IF	CITATIONS
235	In vivo Three-photon Imaging of Brain Activity from Cortical and Subcortical Neurons in Intact Mouse Brain. , 2015, , .		0
236	Nonlinear Deep Tissue Imaging with Advanced Soliton Sources. , 2015, , .		0
237	Nonlinear Deep Tissue Imaging with Advanced Soliton Sources. , 2015, , .		0
238	Intense mid-infrared few-cycle soliton generation covering 2–4.3 µm in fluoride fiber. , 2016, , .		0
239	High pulse energy, tunable repetition rate source for two-photon microscopy. , 2016, , .		Ο
240	Tunable few-cycle soliton generation up to 3.6 \hat{l} 4m in fluoride fiber. , 2016, , .		0
241	Multi-soliton pulse characterization and compression. , 2016, , .		Ο
242	Ultra Small Cross-Section Photonic Probes for Deep Tissue Non-Invasive Light Delivery. , 2016, , .		0
243	Multi-soliton pulse characterization and compression. , 2016, , .		Ο
244	Applying Fiber Optic and Telecom Technologies for Multiphoton Biomedical Imaging. , 2017, , .		0
245	A Two-Photon Shack-Hartmann Wavefront Sensor for The Near-Infrared Wavelength. , 2017, , .		Ο
246	Direct visualization of functional heterogeneity in hepatobiliary metabolism. , 2017, , .		0
247	8 -+. Proceedings of SPIE, 2017, , .	0.8	0
248	An adaptive excitation source for multiphoton imaging. , 2018, , .		0
249	Comparison of excitation wavelengths for in vivo deep imaging of mouse brain. , 2018, , .		0
250	Comparison of emission wavelengths for in vivo deep imaging of mouse brain. , 2019, , .		0
251	In vivo label-free confocal imaging of adult mouse brain up to 1.3-mm depth with NIR-II illumination. , 2019, , .		0
252	Time-lens based multi-color background-free coherent anti-Stokes Raman scattering microscopy. , 2019, , .		0

#	Article	IF	CITATIONS
253	Video-rate three-photon imaging of awake mouse brain. , 2020, , .		Ο
254	High-speed, large field-of-view and deep imaging with an adaptive excitation source. , 2020, , .		0
255	Multi-color Three-photon Fluorescence Imaging Deep in Mouse Brain with Enhanced Cross Section. , 2020, , .		Ο
256	Spatially resolved optical property measurements of microscale biological samples from 450nm to 1630nm. , 2021, , .		0
257	Synchronized time-lens source for coherent Raman scattering microscopy. , 2022, , 257-271.		0
258	An adaptive excitation source for multiphoton deep and fast imaging. , 2022, , .		0