Alberto Ansaldo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4068146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach. Solid State Communications, 2015, 224, 53-63.	1.9	187
2	Engineered MoSe ₂ â€Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1703212.	19.5	152
3	High-yield production of 2D crystals by wet-jet milling. Materials Horizons, 2018, 5, 890-904.	12.2	139
4	Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. Journal of Analytical and Applied Pyrolysis, 2012, 94, 91-98.	5.5	118
5	Piezoelectric Polymer Transducer Arrays for Flexible Tactile Sensors. IEEE Sensors Journal, 2013, 13, 4022-4029.	4.7	106
6	Exfoliation of Few-Layer Black Phosphorus in Low-Boiling-Point Solvents and Its Application in Li-Ion Batteries. Chemistry of Materials, 2018, 30, 506-516.	6.7	93
7	Size-Tuning of WSe ₂ Flakes for High Efficiency Inverted Organic Solar Cells. ACS Nano, 2017, 11, 3517-3531.	14.6	90
8	Boosting Perovskite Solar Cells Performance and Stability through Doping a Polyâ€3(hexylthiophene) Hole Transporting Material with Organic Functionalized Carbon Nanostructures. Advanced Functional Materials, 2016, 26, 7443-7453.	14.9	86
9	Grapheneâ€Based Electron Transport Layers in Perovskite Solar Cells: A Stepâ€Up for an Efficient Carrier Collection. Advanced Energy Materials, 2017, 7, 1701349.	19.5	85
10	PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 342-350.	4.9	83
11	Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio. Journal of Neural Engineering, 2011, 8, 066013.	3.5	79
12	Binder-free graphene as an advanced anode for lithium batteries. Journal of Materials Chemistry A, 2016, 4, 6886-6895.	10.3	79
13	Superior Electrochemical Performance of Carbon Nanotubes Directly Grown on Sharp Microelectrodes. ACS Nano, 2011, 5, 2206-2214.	14.6	70
14	Dopedâ€MoSe ₂ Nanoflakes/3d Metal Oxide–Hydr(Oxy)Oxides Hybrid Catalysts for pHâ€Universal Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1801764.	19.5	67
15	Smaller, softer, lower-impedance electrodes for human neuroprosthesis: a pragmatic approach. Frontiers in Neuroengineering, 2014, 7, 8.	4.8	66
16	Polymer-Based Photocatalytic Hydrogen Generation. Journal of Physical Chemistry C, 2012, 116, 10944-10949.	3.1	65
17	Scalable spray-coated graphene-based electrodes for high-power electrochemical double-layer capacitors operating over a wide range of temperature. Energy Storage Materials, 2021, 34, 1-11.	18.0	61
18	Nitrogen-Doped Single-Walled Carbon Nanohorns as a Cost-Effective Carbon Host toward High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5551-5559.	8.0	57

ALBERTO ANSALDO

#	Article	IF	CITATIONS
19	Redox Centers Evolution in Phospho-Olivine Type (LiFe _{0.5} Mn _{0.5}) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf
20	Few-layer graphene improves silicon performance in Li-ion battery anodes. Journal of Materials Chemistry A, 2017, 5, 19306-19315.	10.3	54
21	Etched Colloidal LiFePO4 Nanoplatelets toward High-Rate Capable Li-Ion Battery Electrodes. Nano Letters, 2014, 14, 6828-6835.	9.1	53
22	Biologically Compatible Neural Interface To Safely Couple Nanocoated Electrodes to the Surface of the Brain. ACS Nano, 2013, 7, 3887-3895.	14.6	48
23	Toward Pt-Free Anion-Exchange Membrane Fuel Cells: Fe–Sn Carbon Nitride–Graphene Core–Shell Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 2018, 30, 2651-2659.	6.7	44
24	Highâ€Power Graphene–Carbon Nanotube Hybrid Supercapacitors. ChemNanoMat, 2017, 3, 436-446.	2.8	39
25	Extending the Colloidal Transition Metal Dichalcogenide Library to ReS ₂ Nanosheets for Application in Gas Sensing and Electrocatalysis. Small, 2019, 15, e1904670.	10.0	38
26	Mechanics and actuation properties of bucky gel-based electroactive polymers. Sensors and Actuators B: Chemical, 2011, 156, 949-953.	7.8	33
27	Cross-linking super-growth carbon nanotubes to boost the performance of bucky gel actuators. Carbon, 2011, 49, 2253-2257.	10.3	32
28	Graphene-Based Hole-Selective Layers for High-Efficiency, Solution-Processed, Large-Area, Flexible, Hydrogen-Evolving Organic Photocathodes. Journal of Physical Chemistry C, 2017, 121, 21887-21903.	3.1	30
29	Nitrogen-doped graphene based triboelectric nanogenerators. Nano Energy, 2021, 87, 106173.	16.0	30
30	Electrode selection rules for enhancing the performance of triboelectric nanogenerators and the role of few-layers graphene. Nano Energy, 2020, 76, 104989.	16.0	28
31	A study of the effect of different catalysts for the efficient CVD growth of carbon nanotubes on silicon substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 6-10.	2.7	27
32	Cortical control of objectâ€specific grasp relies on adjustments of both activity and effective connectivity: a common marmoset study. Journal of Physiology, 2017, 595, 7203-7221.	2.9	27
33	ITO nanoparticles break optical transparency/high-areal capacitance trade-off for advanced aqueous supercapacitors. Journal of Materials Chemistry A, 2017, 5, 25177-25186.	10.3	26
34	Silicon Few-Layer Graphene Nanocomposite as High-Capacity and High-Rate Anode in Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 1793-1802.	5.1	26
35	Hierarchical oxygen reduction reaction electrocatalysts based on FeSn0.5 species embedded in carbon nitride-graphene based supports. Electrochimica Acta, 2018, 280, 149-162.	5.2	22
36	Carbon nanotubes-bridged molybdenum trioxide nanosheets as high performance anode for lithium ion batteries. 2D Materials, 2018, 5, 015024.	4.4	21

ALBERTO ANSALDO

#	Article	IF	CITATIONS
37	Relevance of LiPF ₆ as Etching Agent of LiMnPO ₄ Colloidal Nanocrystals for High Rate Performing Li-ion Battery Cathodes. ACS Applied Materials & Interfaces, 2016, 8, 4069-4075.	8.0	20
38	Chemical vapour deposited carbon nanotube coated microelectrodes for intracortical neural recording. Physica Status Solidi (B): Basic Research, 2010, 247, 2703-2707.	1.5	17
39	Parylene-Coated Ionic Liquid–Carbon Nanotube Actuators for User-Safe Haptic Devices. ACS Applied Materials & Interfaces, 2015, 7, 15542-15550.	8.0	16
40	Increasing the maximum strain and efficiency of bucky gel actuators by pyrrole oxidative polymerization on carbon nanotubes dispersed in an ionic liquid. Carbon, 2012, 50, 4506-4511.	10.3	15
41	Independent Component Decomposition of Human Somatosensory Evoked Potentials Recorded by Micro-Electrocorticography. International Journal of Neural Systems, 2017, 27, 1650052.	5.2	15
42	From scaled-up production of silicon-graphene nanocomposite to the realization of an ultra-stable full-cell Li-ion battery. 2D Materials, 2021, 8, 035014.	4.4	15
43	Significant strain and force improvements of single-walled carbon nanotube actuator: A metal chalcogenides approach. Sensors and Actuators B: Chemical, 2016, 230, 673-683.	7.8	14
44	Piezoelectric polymer transducer arrays for flexible tactile sensors. , 2012, , .		11
45	Poly(ionic liquid)-carbon nanotubes self-supported, highly electroconductive composites and their application in electroactive devices. Composites Science and Technology, 2015, 117, 364-370.	7.8	11
46	Performance improvement in bucky gel actuators by chemical modifications of carbon nanotubes. Physica Status Solidi - Rapid Research Letters, 2010, 4, 64-66.	2.4	10
47	Ultra-flexible and brain-conformable micro-electrocorticography device with low impedance PEDOT-carbon nanotube coated microelectrodes. , 2013, , .		8
48	Rapid Identification of Cortical Motor Areas in Rodents by High-Frequency Automatic Cortical Stimulation and Novel Motor Threshold Algorithm. Frontiers in Neuroscience, 2017, 11, 580.	2.8	8
49	Benchmarking bucky gel actuators: Chemically modified commercial carbon nanotubes versus super-growth carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 3055-3058.	1.5	7
50	Germanium Nanocrystals-MWCNTs Composites as Anode Materials for Lithium Ion Batteries. ECS Transactions, 2014, 62, 19-24.	0.5	7
51	Direct transfer of CVD-grown transparent SWCNT networks from growth substrate to polymer. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2430-2433.	2.7	6
52	Accurate motor mapping in awake common marmosets using micro-electrocorticographical stimulation and stochastic threshold estimation. Journal of Neural Engineering, 2018, 15, 036019.	3.5	5
53	CVD synthesis of single wall carbon nanotubes devoted to ULSI electronic applications. Physica Status Solidi (B): Basic Research, 2006, 243, 3077-3081.	1.5	4
54	Geometry dependent performance of bucky gel actuators: Increasing operating frequency by miniaturization. Physica Status Solidi (B): Basic Research, 2012, 249, 2361-2364.	1.5	4

ALBERTO ANSALDO

#	Article	IF	CITATIONS
55	Nanostructured microsphere coated with living cells and tethered with low-stiffness wire: A possible solution to brain tissue reactions. , 2015, , .		4
56	Catalytic chemical vapour deposition growth of single wall carbon nanotube films on different substrates for transparent electronic devices. Physica Status Solidi (B): Basic Research, 2007, 244, 3935-3938.	1.5	3
57	Parylene coated carbon nanotube actuators for tactile stimulation. , 2015, , .		3
58	The electrolyte layer composition: A key element for improving the performance of carbon nanotube actuator. Sensors and Actuators B: Chemical, 2016, 222, 1073-1082.	7.8	3
59	Exâ€situ synthesized nickel nanoparticles for multiâ€walled carbon nanotube growth on high aspect ratio substrates. Physica Status Solidi (B): Basic Research, 2008, 245, 1923-1926.	1.5	2
60	Bucky gel actuators optimization towards haptic applications. Proceedings of SPIE, 2014, , .	0.8	2
61	Porous Silicon as Nanostructured Anode Material for Lithium Ion Batteries. ECS Transactions, 2014, 62, 25-34.	0.5	2
62	A Compact and Autoclavable System for Acute Extracellular Neural Recording and Brain Pressure Monitoring for Humans. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9, 50-59.	4.0	2
63	Investigating Schottky Barriers Effects in Carbon Nanotube FETs. AIP Conference Proceedings, 2005, , .	0.4	1
64	Improvement of tactile capacitive sensors of the humanoid robot iCub's fingertips. , 2011, , .		1
65	Actuators based on intrinsic conductive polymers/carbon nanoparticles nanocomposites. , 2013, , .		1
66	Strategies for tuning carbon nanotube plastic actuator performance through material hybridization and the thickness effect: a proof of principle. Smart Materials and Structures, 2013, 22, 104003.	3.5	1
67	Hybrid Nanostructures: Organic Interconnections and Device Applications. , 2006, , .		Ο
68	Singleâ€walled carbon nanotube networks growth optimization. Physica Status Solidi (B): Basic Research, 2009, 246, 2473-2476.	1.5	0
69	Linear and bending actuation of bucky gel. Proceedings of SPIE, 2011, , .	0.8	Ο
70	Improving dry carbon nanotube actuators by chemical modifications, material hybridization, and proper engineering. Proceedings of SPIE, 2013, , .	0.8	0
71	Carbon nanotubes plastic actuator: Towards lightweight, low-voltage haptic devices. , 2014, , .		Ο
72	Cross-linked carbon nanotubes buckygel actuators: an in-depth study. Proceedings of SPIE, 2015, , .	0.8	0