Hamish Ian McCallum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4067961/publications.pdf

Version: 2024-02-01

170 papers 11,163 citations

³⁸⁷⁴² 50 h-index

97 g-index

181 all docs

181 docs citations

times ranked

181

10440 citing authors

#	Article	IF	CITATIONS
1	How should pathogen transmission be modelled?. Trends in Ecology and Evolution, 2001, 16, 295-300.	8.7	965
2	Pathways to zoonotic spillover. Nature Reviews Microbiology, 2017, 15, 502-510.	28.6	702
3	Detecting disease and parasite threats to endangered species and ecosystems. Trends in Ecology and Evolution, 1995, 10, 190-194.	8.7	438
4	Ecological dynamics of emerging bat virus spillover. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142124.	2.6	375
5	Contact networks in a wild Tasmanian devil (<i>Sarcophilus harrisii</i>) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecology Letters, 2009, 12, 1147-1157.	6.4	280
6	Endemic Infection of the Amphibian Chytrid Fungus in a Frog Community Post-Decline. PLoS Biology, 2004, 2, e351.	5.6	238
7	The rising tide of ocean diseases: unsolved problems and research priorities. Frontiers in Ecology and the Environment, 2004, 2, 375-382.	4.0	236
8	Life-history change in disease-ravaged Tasmanian devil populations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10023-10027.	7.1	232
9	Evaluating the links between climate, disease spread, and amphibian declines. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17436-17441.	7.1	223
10	Disease, habitat fragmentation and conservation. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2041-2049.	2.6	220
11	Transmission dynamics of Tasmanian devil facial tumor disease may lead to diseaseâ€induced extinction. Ecology, 2009, 90, 3379-3392.	3.2	210
12	Distribution and Impacts of Tasmanian Devil Facial Tumor Disease. EcoHealth, 2007, 4, 318-325.	2.0	163
13	Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nature Communications, 2016, 7, 12684.	12.8	162
14	Pathogen spillover during land conversion. Ecology Letters, 2018, 21, 471-483.	6.4	161
15	The 10 Australian ecosystems most vulnerable to tipping points. Biological Conservation, 2011, 144, 1472-1480.	4.1	158
16	Does terrestrial epidemiology apply to marine systems?. Trends in Ecology and Evolution, 2004, 19, 585-591.	8.7	156
17	Tasmanian devil facial tumour disease: lessons for conservation biology. Trends in Ecology and Evolution, 2008, 23, 631-637.	8.7	152
18	Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir–Host Populations. PLoS Neglected Tropical Diseases, 2016, 10, e0004796.	3.0	152

#	Article	IF	Citations
19	Contextâ€dependent conservation responses to emerging wildlife diseases. Frontiers in Ecology and the Environment, 2015, 13, 195-202.	4.0	147
20	Rates of spread of marine pathogens. Ecology Letters, 2003, 6, 1062-1067.	6.4	144
21	The impact of disease on the survival and population growth rate of the Tasmanian devil. Journal of Animal Ecology, 2007, 76, 926-936.	2.8	143
22	Impact and Dynamics of Disease in Species Threatened by the Amphibian Chytrid Fungus, <i>Batrachochytrium dendrobatidis</i>): Conservation Biology, 2009, 23, 1242-1252.	4.7	139
23	Assessing spatial patterns of disease risk to biodiversity: implications for the management of the amphibian pathogen, <i>Batrachochytrium dendrobatidis</i> Journal of Applied Ecology, 2011, 48, 163-173.	4.0	134
24	Role of the Domestic Chicken (Gallus gallus)in the Epidemiology of Urban Visceral Leishmaniasis in Brazil. Emerging Infectious Diseases, 2002, 8, 1480-1485.	4.3	130
25	Biting injuries and transmission of <scp>T</scp> asmanian devil facial tumour disease. Journal of Animal Ecology, 2013, 82, 182-190.	2.8	122
26	The current decline of tropical marsupials in <scp>A</scp> ustralia: is history repeating?. Global Ecology and Biogeography, 2014, 23, 181-190.	5.8	122
27	Disease and the dynamics of extinction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2828-2839.	4.0	120
28	Integrating species traits with extrinsic threats: closing the gap between predicting and preventing species declines. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1515-1523.	2.6	114
29	Conservation Management of Tasmanian Devils in the Context of an Emerging, Extinction-threatening Disease: Devil Facial Tumor Disease. EcoHealth, 2007, 4, 326-337.	2.0	113
30	Engineering a future for amphibians under climate change. Journal of Applied Ecology, 2011, 48, 487-492.	4.0	112
31	Demography, disease and the devil: lifeâ€history changes in a diseaseâ€affected population of Tasmanian devils (<i>Sarcophilus harrisii</i>). Journal of Animal Ecology, 2009, 78, 427-436.	2.8	110
32	Effects of immigration on chaotic population dynamics. Journal of Theoretical Biology, 1992, 154, 277-284.	1.7	108
33	Parasite loads in parthenogenetic and sexual lizards (Heteronotia binoei) : support for the Red Queen hypothesis. Proceedings of the Royal Society B: Biological Sciences, 1991, 244, 145-149.	2.6	105
34	Ecological interventions to prevent and manage zoonotic pathogen spillover. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180342.	4.0	102
35	Review of the Amphibian Immune Response to Chytridiomycosis, and Future Directions. Frontiers in Immunology, 2018, 9, 2536.	4.8	98
36	Breaking beta: deconstructing the parasite transmission function. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160084.	4.0	91

#	Article	IF	CITATIONS
37	Trophic Cascades Following the Diseaseâ€Induced Decline of an Apex Predator, the Tasmanian Devil. Conservation Biology, 2014, 28, 63-75.	4.7	90
38	Contemporary Demographic Reconstruction Methods Are Robust to Genome Assembly Quality: A Case Study in Tasmanian Devils. Molecular Biology and Evolution, 2019, 36, 2906-2921.	8.9	84
39	Seasonal, demographic and densityâ€related patterns of contact between Tasmanian devils (<i>Sarcophilus harrisii</i>): Implications for transmission of devil facial tumour disease. Austral Ecology, 2008, 33, 614-622.	1.5	81
40	To Lose Both Would Look Like Carelessness: Tasmanian Devil Facial Tumour Disease. PLoS Biology, 2006, 4, e342.	5.6	73
41	Evolution in a transmissible cancer: a study of the chromosomal changes in devil facial tumor (DFT) as it spreads through the wild Tasmanian devil population. Cancer Genetics, 2012, 205, 101-112.	0.4	72
42	Reduced Effect of Tasmanian Devil Facial Tumor Disease at the Disease Front. Conservation Biology, 2012, 26, 124-134.	4.7	69
43	Using decision analysis to support proactive management of emerging infectious wildlife diseases. Frontiers in Ecology and the Environment, 2017, 15, 214-221.	4.0	69
44	Evaluation of Selective Culling of Infected Individuals to Control Tasmanian Devil Facial Tumor Disease. Conservation Biology, 2010, 24, 841-851.	4.7	68
45	Sampling to elucidate the dynamics of infections in reservoir hosts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180336.	4.0	68
46	Null expectations for disease dynamics in shrinking habitat: dilution or amplification?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160173.	4.0	67
47	Ontogenetic Dietary Partitioning by Crocodylus johnstoni during the Dry Season. Copeia, 1996, 1996, 978.	1.3	65
48	The non-human reservoirs of Ross River virus: a systematic review of the evidence. Parasites and Vectors, 2018, 11, 188.	2.5	65
49	Wildlife disease ecology in changing landscapes: Mesopredator release and toxoplasmosis. International Journal for Parasitology: Parasites and Wildlife, 2013, 2, 110-118.	1.5	62
50	Brave new green world $\hat{a} \in$ Consequences of a carbon economy for the conservation of Australian biodiversity. Biological Conservation, 2013, 161, 71-90.	4.1	61
51	Quantifying 25 years of diseaseâ€caused declines in Tasmanian devil populations: host density drives spatial pathogen spread. Ecology Letters, 2021, 24, 958-969.	6.4	61
52	Global spread of helminth parasites at the human–domestic animal–wildlife interface. Global Change Biology, 2018, 24, 3254-3265.	9.5	55
53	Inconclusiveness of Chytridiomycosis as the Agent in Widespread Frog Declines. Conservation Biology, 2005, 19, 1421-1430.	4.7	52
54	Biological control of the cane toad in Australia: a review. Animal Conservation, 2010, 13, 16-23.	2.9	52

#	Article	IF	Citations
55	Infection of the fittest: devil facial tumour disease has greatest effect on individuals with highest reproductive output. Ecology Letters, 2017, 20, 770-778.	6.4	50
56	Infection dynamics of <i>Ichthyophthirius multifiliis</i> Ione Parasitology, 1982, 85, 475-488.	1.5	49
57	Does infectious disease influence the efficacy of marine protected areas? A theoretical framework. Journal of Applied Ecology, 2005, 42, 688-698.	4.0	49
58	Conditions affecting the timing and magnitude of Hendra virus shedding across pteropodid bat populations in Australia. Epidemiology and Infection, 2017, 145, 3143-3153.	2.1	49
59	Synchronous shedding of multiple bat paramyxoviruses coincides with peak periods of Hendra virus spillover. Emerging Microbes and Infections, 2019, 8, 1314-1323.	6.5	49
60	EXPOSING EXTINCTION RISK ANALYSIS TO PATHOGENS: IS DISEASE JUST ANOTHER FORM OF DENSITY DEPENDENCE?. , 2005, 15 , $1402-1414$.		47
61	Models predict that culling is not a feasible strategy to prevent extinction of Tasmanian devils from facial tumour disease. Journal of Applied Ecology, 2011, 48, 1315-1323.	4.0	47
62	What is a vector? Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160085.	4.0	47
63	Density dependence in an island population of silvereyes. Ecology Letters, 2000, 3, 95-100.	6.4	45
64	Moving Beyond Too Little, Too Late: Managing Emerging Infectious Diseases in Wild Populations Requires International Policy and Partnerships. EcoHealth, 2015, 12, 404-407.	2.0	45
65	Largeâ€effect loci affect survival in Tasmanian devils (<i>Sarcophilus harrisii</i>) infected with a transmissible cancer. Molecular Ecology, 2018, 27, 4189-4199.	3.9	45
66	Sex-biased dispersal in a long-lived polygynous reptile (Crocodylus johnstoni  ). Behavioral Ecology and Sociobiology, 1998, 44, 85-90.	1.4	44
67	Demography of bridled nailtail wallabies translocated to the edge of their former range from captive and wild stock. Biological Conservation, 2001, 102, 285-299.	4.1	43
68	Models for managing wildlife disease. Parasitology, 2016, 143, 805-820.	1.5	43
69	Movements and Home Ranges of Crocodylus johnstoni in the Lynd River, Queensland. Wildlife Research, 1997, 24, 379.	1.4	42
70	Mechanisms underlying host persistence following amphibian disease emergence determine appropriate management strategies. Ecology Letters, 2021, 24, 130-148.	6.4	42
71	Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer. Conservation Genetics, 2019, 20, 81-87.	1.5	41
72	Impact of micropredatory gnathiid isopods on young coral reef fishes. Coral Reefs, 2008, 27, 655-661.	2.2	40

#	Article	IF	CITATIONS
73	Predator regulation of Acanthaster planci. Journal of Theoretical Biology, 1987, 127, 207-220.	1.7	39
74	Simulating devil facial tumour disease outbreaks across empirically derived contact networks. Journal of Applied Ecology, 2012, 49, 447-456.	4.0	39
75	Diseaseâ€induced decline of an apex predator drives invasive dominated states and threatens biodiversity. Ecology, 2016, 97, 394-405.	3.2	38
76	The characteristics of six species of living hollow-bearing trees and their importance for arboreal marsupials in the dry sclerophyll forests of southeast Queensland, Australia. Forest Ecology and Management, 2003, 182, 75-92.	3.2	37
77	Tracing the rise of malignant cell lines: Distribution, epidemiology and evolutionary interactions of two transmissible cancers in Tasmanian devils. Evolutionary Applications, 2019, 12, 1772-1780.	3.1	37
78	Models to assess the potential of <i>Capillaria hepatica </i> to control population outbreaks of house mice. Parasitology, 1989, 98, 425-437.	1.5	36
79	Acquired resistance of black mollies <i>Poecilia latipinna</i> to infection by <i>Ichthyophthirius multifiliis</i> . Parasitology, 1986, 93, 251-261.	1.5	34
80	Home range and movements of radio-tracked estuarine crocodiles (Crocodylus porosus) within a non-tidal waterhole. Wildlife Research, 2008, 35, 140.	1.4	34
81	Whether the Weather Drives Patterns of Endemic Amphibian Chytridiomycosis: A Pathogen Proliferation Approach. PLoS ONE, 2013, 8, e61061.	2.5	34
82	A guide for ecologists: Detecting the role of disease in faunal declines and managing population recovery. Biological Conservation, 2017, 214, 136-146.	4.1	33
83	Environmental drivers of spatiotemporal foraging intensity in fruit bats and implications for Hendra virus ecology. Scientific Reports, 2018, 8, 9555.	3.3	33
84	Individual and temporal variation in pathogen load predicts longâ€ŧerm impacts of an emerging infectious disease. Ecology, 2019, 100, e02613.	3.2	33
85	Modelling the impact of predation on reintroductions of bridled nailtail wallabies Wildlife Research, 1995, 22, 163.	1.4	31
86	Models of Eucalypt phenology predict bat population flux. Ecology and Evolution, 2016, 6, 7230-7245.	1.9	30
87	The genomic basis of tumor regression in Tasmanian devils (Sarcophilus harrisii). Genome Biology and Evolution, 2018, 10, 3012-3025.	2.5	30
88	Dose–response and transmission: the nexus between reservoir hosts, environment and recipient hosts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190016.	4.0	30
89	Quantifying the impact of disease on threatened species. Pacific Conservation Biology, 1994, 1, 107.	1.0	29
90	Correlates of Recent Declines of Rodents in Northern and Southern Australia: Habitat Structure Is Critical. PLoS ONE, 2015, 10, e0130626.	2.5	29

#	Article	IF	Citations
91	Individual heterogeneity and senescence in Silvereyes on Heron Island. Ecology, 2011, 92, 813-820.	3.2	28
92	Integral Projection Models for host–parasite systems with an application to amphibian chytrid fungus. Methods in Ecology and Evolution, 2016, 7, 1182-1194.	5.2	28
93	Sublethal damage to Acanthasterplanci as an index of predation pressure. Marine Ecology - Progress Series, 1989, 56, 29-36.	1.9	28
94	A systematic evaluation of the conservation plans for the pantanal wetland in Brazil. Wetlands, 2009, 29, 1189-1201.	1.5	26
95	Effects of parasites on larval and juvenile stages of the coral reef fish Pomacentrus moluccensis. Coral Reefs, 2010, 29, 31-40.	2.2	26
96	Immunocontraception for wildlife population control. Trends in Ecology and Evolution, 1996, 11, 491-493.	8.7	25
97	Rate of intersexual interactions affects injury likelihood in Tasmanian devil contact networks. Behavioral Ecology, 2019, 30, 1087-1095.	2.2	25
98	Bushmeat hunting and consumption is a pervasive issue in African savannahs: insights from four protected areas in Malawi. Biodiversity and Conservation, 2020, 29, 1443-1464.	2.6	25
99	Knowledge Gaps in the Biology, Ecology, and Management of the Pacific Crown-of-Thorns Sea Star <i>Acanthaster</i> sp. on Australia's Great Barrier Reef. Biological Bulletin, 2021, 241, 330-346.	1.8	25
100	Shifts in macropod home ranges in response to wildlife management interventions. Wildlife Research, 2010, 37, 379.	1.4	24
101	A transmissible cancer shifts from emergence to endemism in Tasmanian devils. Science, 2020, 370, .	12.6	24
102	The potential of Capillaria hepatica to control mouse plagues. Parasitology Today, 1990, 6, 190-193.	3.0	23
103	Persistent infections support maintenance of a coronavirus in a population of Australian bats (Myotis) Tj ETQq1 1	0.784314 2.1	l 4 rggBT /Over
104	Assessing the significance of endemic disease in conservation—koalas, chlamydia, and koala retrovirus as a case study. Conservation Letters, 2018, 11, e12425.	5.7	23
105	Live-trapping of the northern hairy-nosed wombat (Lasiorhinus krefftii): population-size estimates and effects on individuals. Wildlife Research, 1995, 22, 741.	1.4	22
106	Growth dynamics of freshwater crocodiles (Crocodylus johnstoni) in the Lynd River, Queensland. Australian Journal of Zoology, 2006, 54, 409.	1.0	22
107	Non-invasive monitoring of glucocorticoid physiology within highland and lowland populations of native Australian Great Barred Frog (Mixophyes fasciolatus). General and Comparative Endocrinology, 2013, 191, 24-30.	1.8	22
108	Relaxation of risk-sensitive behaviour of prey following disease-induced decline of an apex predator, the Tasmanian devil. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150124.	2.6	22

#	Article	IF	CITATIONS
109	Spontaneous Tumor Regression in Tasmanian Devils Associated with <i>RASL11A</i> Activation. Genetics, 2020, 215, 1143-1152.	2.9	22
110	Systematic temporal changes in host susceptibility to infection: demographic mechanisms. Parasitology, 1984, 89, 195-208.	1.5	21
111	Population effects of parasite survival of host death: experimental studies of the interaction of Ichthyophthirius multifiliis and its fish host. Parasitology, 1985, 90, 529-547.	1.5	20
112	Covariance in parasite burdens: the effect of predisposition to infection. Parasitology, 1990, 100, 153-159.	1.5	20
113	REFLECTING ON ETHICAL AND LEGAL ISSUES IN WILDLIFE DISEASE. Bioethics, 2005, 19, 336-347.	1.4	20
114	Will Wallace's Line Save Australia from Avian Influenza?. Ecology and Society, 2008, 13, .	2.3	20
115	Interpreting mosquito feeding patterns in Australia through an ecological lens: an analysis of blood meal studies. Parasites and Vectors, 2019, 12, 156.	2.5	20
116	Immunological Aspects of Chytridiomycosis. Journal of Fungi (Basel, Switzerland), 2020, 6, 234.	3.5	20
117	Habitat Use by Crocodylus johnstoni in the Lynd River, Queensland. Journal of Herpetology, 1997, 31, 114.	0.5	19
118	Modelling transmission: mass action and beyond. Trends in Ecology and Evolution, 2002, 17, 64-65.	8.7	19
119	Optimising cleaning behaviour: minimising the costs and maximising ectoparasite removal. Marine Ecology - Progress Series, 2002, 234, 257-264.	1.9	19
120	Is disease a major causal factor in declines? An Evidence Framework and case study on koala chlamydiosis. Biological Conservation, 2018, 221, 334-344.	4.1	18
121	The devil is in the details: Genomics of transmissible cancers in Tasmanian devils. PLoS Pathogens, 2018, 14, e1007098.	4.7	18
122	Disease swamps molecular signatures of geneticâ€environmental associations to abiotic factors in Tasmanian devil (<i>Sarcophilus harrisii</i>) populations. Evolution; International Journal of Organic Evolution, 2020, 74, 1392-1408.	2.3	18
123	Fencing artificial waterpoints failed to influence density and distribution of red kangaroos (Macropus rufus). Wildlife Research, 2009, 36, 457.	1.4	17
124	Over-Wintering Tadpoles of Mixophyes fasciolatus Act as Reservoir Host for Batrachochytrium dendrobatidis. PLoS ONE, 2014, 9, e92499.	2.5	17
125	Lose biodiversity, gain disease. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8523-8524.	7.1	17
126	Modelling Wildlife-Parasite Interactions to Help Plan and Interpret Field Studies Wildlife Research, 1995, 22, 21.	1.4	16

#	Article	IF	Citations
127	Approaching tipping points: a focussed review of indicators and relevance to managing intertidal ecosystems. Wetlands Ecology and Management, 2015, 23, 791-802.	1.5	16
128	Infectious disease and sickness behaviour: tumour progression affects interaction patterns and social network structure in wild Tasmanian devils. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202454.	2.6	16
129	AN INDIVIDUALâ€BASED MODEL FOR FERAL HOGS IN GREAT SMOKY MOUNTAINS NATIONAL PARK. Natural Resource Modelling, 2015, 28, 18-36.	2.0	14
130	Darwin, the devil, and the management of transmissible cancers. Conservation Biology, 2021, 35, 748-751.	4.7	13
131	Optimizing noninvasive sampling of a zoonotic bat virus. Ecology and Evolution, 2021, 11, 12307-12321.	1.9	13
132	The Devil's Cancer. Scientific American, 2011, 304, 72-77.	1.0	12
133	Going the distance on kangaroos and water: A review and test of artificial water point closures in Australia. Journal of Arid Environments, 2018, 151, 31-40.	2.4	12
134	The decline of a large yellow-footed rock-wallaby (Petrogale xanthopus) colony following a pulse of resource abundance. Australian Mammalogy, 2010, 32, 99.	1.1	10
135	Issues with modelling the current and future distribution of invasive pathogens. Journal of Applied Ecology, 2011, 48, 177-180.	4.0	10
136	A report of capture myopathy in the Tasmanian pademelon (Thylogale billardierii). Animal Welfare, 2013, 22, 1-4.	0.7	10
137	Impact of cane toads on a community of Australian native frogs, determined by 10Âyears of automated identification and logging of calling behaviour. Journal of Applied Ecology, 2017, 54, 2000-2010.	4.0	10
138	Breeding ecology and phenology of two stream breeding myobatrachid frogs (<i>Mixophyes fleayi and) Tj ETQqC</i>	0 0 0 rgBT	/Oygrlock 10
139	Comparative landscape genetics reveals differential effects of environment on host and pathogen genetic structure in Tasmanian devils (<i>Sarcophilus harrisii</i>) and their transmissible tumour. Molecular Ecology, 2020, 29, 3217-3233.	3.9	9
140	Contemporary and historical selection in Tasmanian devils (<i>Sarcophilus harrisii</i>) support novel, polygenic response to transmissible cancer. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210577.	2.6	9
141	Spatial dynamics of pathogen transmission in communally roosting species: Impacts of changing habitats on batâ€virus dynamics. Journal of Animal Ecology, 2021, 90, 2609-2622.	2.8	9
142	Coronaviruses and Australian bats: a review in the midst of a pandemic. Australian Journal of Zoology, 2019, 67, 346.	1.0	9
143	Species Traits and Hotspots Associated with Ross River Virus Infection in Nonhuman Vertebrates in South East Queensland. Vector-Borne and Zoonotic Diseases, 2021, 21, 50-58.	1.5	8
144	Physiology and ecology combine to determine host and vector importance for Ross River virus. ELife, 2021, 10, .	6.0	8

#	Article	IF	Citations
145	Pulse fishing may be superior to selective fishing. Mathematical Biosciences, 1988, 89, 177-181.	1.9	7
146	Disease and connectivity., 2006,, 479-501.		7
147	A Two-Phase Model for Smoothly Joining Disparate Growth Phases in the Macropodid Thylogale billardierii. PLoS ONE, 2011, 6, e24934.	2.5	7
148	Current trends and future directions in koala chlamydial disease research. Biological Conservation, 2017, 215, 179-188.	4.1	7
149	Associations Between Ross River Virus Infection in Humans and Vector-Vertebrate Community Ecology in Brisbane, Australia. Vector-Borne and Zoonotic Diseases, 2020, 20, 680-691.	1.5	7
150	Using Stochastic Modeling to Predict the Effect of Culling and Colony Dispersal of Bats on Zoonotic Viral Epidemics. Vector-Borne and Zoonotic Diseases, 2021, 21, 369-377.	1.5	7
151	Spatial variation in gene expression of Tasmanian devil facial tumors despite minimal host transcriptomic response to infection. BMC Genomics, 2021, 22, 698.	2.8	6
152	Conventional wisdom on roosting behavior of Australian flyingâ€foxes—A critical review, and evaluation using new data. Ecology and Evolution, 2021, 11, 13532-13558.	1.9	6
153	Phylogeography of the parasitic fly Batrachomyia in the Wet Tropics of north-east Australia, and susceptibility of host frog lineages in a mosaic contact zone. Biological Journal of the Linnean Society, 2007, 92, 593-603.	1.6	5
154	Evidence of Effects of Endemic Chytridiomycosis on Host Survival, Behavior, and Emigration: Reply to Schmidt. Conservation Biology, 2010, 24, 900-902.	4.7	5
155	Completing the circle: stock-recruitment relationships and Acanthaster. Marine and Freshwater Research, 1992, 43, 653.	1.3	5
156	Sins of omission and sins of commission: St Thomas Aquinas and the devil. Australian Zoologist, 2010, 35, 307-314.	1.1	5
157	Emergence, transmission and evolution of an uncommon enemy: Tasmanian devil facial tumour disease. , 2019, , 321-341.		4
158	The status of hollow-bearing trees required for the conservation of arboreal marsupials in the dry sderophyll forests of south-east Queensland, Australia. Pacific Conservation Biology, 2005, 11, 38.	1.0	4
159	Modelling marine diseases. , 2020, , 233-256.		4
160	Six degrees of <i>Apodemus</i> separation. Journal of Animal Ecology, 2009, 78, 891-893.	2.8	3
161	Occurrence of Batrachochytrium dendrobatidis within and between species: A review of influential variables as identified from field studies. Biological Conservation, 2021, 262, 109300.	4.1	3

Bottomâ€up processes in a declining yellowâ€footed rockâ€wallaby (<scp><i>P</i></scp><i>etrogale) Tj ETQq0 0 orgBT /Overlock 10 orgBT /Overlock 1

#	Article	IF	CITATIONS
163	Response to commentary by Woinarski (Critical-weight-range marsupials in northern Australia are) Tj ETQq1 1 0.7	/84314 rgB 5.8	BT /Overlock 2
164	The Devil is in the detail: conservation biology, animal philosophies and the role of animal ethics committees. , 2012, , 79-88.		2
165	Counterintuitive scaling between population abundance and local density: Implications for modelling transmission of infectious diseases in bat populations. Journal of Animal Ecology, 2021, , .	2.8	2
166	Achievement and challenge. Trends in Ecology and Evolution, 2000, 15, 352-353.	8.7	1
167	The Rising Tide of Ocean Diseases: Unsolved Problems and Research Priorities. Frontiers in Ecology and the Environment, 2004, 2, 375.	4.0	1
168	Mathematical Ecology of Populations and Ecosystems. Austral Ecology, 2011, 36, e17-e17.	1.5	0
169	The persistence of a SIR disease in a metapopulation: Hendra virus epidemics in Australian black flying foxes (Pteropus alecto). Australian Journal of Zoology, 2021, , .	1.0	0
170	Effects of Waning Maternal Immunity on Infection Dynamics in Seasonally Breeding Wildlife. EcoHealth, 2021, 18, 194-203.	2.0	0