Claude Krummenacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4067704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Entry of Alphaherpesviruses Mediated by Poliovirus Receptor-Related Protein 1 and Poliovirus Receptor. Science, 1998, 280, 1618-1620.	12.6	851
2	Herpes Simplex Virus Glycoprotein D Bound to the Human Receptor HveA. Molecular Cell, 2001, 8, 169-179.	9.7	349
3	Entry of herpesviruses into mammalian cells. Cellular and Molecular Life Sciences, 2008, 65, 1653-1668.	5.4	294
4	Herpes Virus Fusion and Entry: A Story with Many Characters. Viruses, 2012, 4, 800-832.	3.3	282
5	Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry. EMBO Journal, 2005, 24, 4144-4153.	7.8	231
6	Herpes Simplex Virus Glycoprotein D Can Bind to Poliovirus Receptor-Related Protein 1 or Herpesvirus Entry Mediator, Two Structurally Unrelated Mediators of Virus Entry. Journal of Virology, 1998, 72, 7064-7074.	3.4	223
7	Structure of Herpes Simplex Virus Glycoprotein D Bound to the Human Receptor Nectin-1. PLoS Pathogens, 2011, 7, e1002277.	4.7	154
8	Monoclonal Antibodies to Distinct Sites on Herpes Simplex Virus (HSV) Glycoprotein D Block HSV Binding to HVEM. Journal of Virology, 1998, 72, 3595-3601.	3.4	134
9	Comparative usage of herpesvirus entry mediator A and nectin-1 by laboratory strains and clinical isolates of herpes simplex virus. Virology, 2004, 322, 286-299.	2.4	120
10	The First Immunoglobulin-Like Domain of HveC Is Sufficient To Bind Herpes Simplex Virus gD with Full Affinity, While the Third Domain Is Involved in Oligomerization of HveC. Journal of Virology, 1999, 73, 8127-8137.	3.4	119
11	Localization of a Binding Site for Herpes Simplex Virus Glycoprotein D on Herpesvirus Entry Mediator C by Using Antireceptor Monoclonal Antibodies. Journal of Virology, 2000, 74, 10863-10872.	3.4	111
12	Understanding HSV-1 entry glycoproteins. Reviews in Medical Virology, 2007, 17, 205-215.	8.3	98
13	The Major Neutralizing Antigenic Site on Herpes Simplex Virus Glycoprotein D Overlaps a Receptor-Binding Domain. Journal of Virology, 1999, 73, 9879-9890.	3.4	80
14	Entry of Herpes Simplex Virus Type 1 into Primary Sensory Neurons In Vitro Is Mediated by Nectin-1/HveC. Journal of Virology, 2003, 77, 3307-3311.	3.4	74
15	Cytolethal Distending Toxin-induced Cell Cycle Arrest of Lymphocytes Is Dependent upon Recognition and Binding to Cholesterol. Journal of Biological Chemistry, 2009, 284, 10650-10658.	3.4	72
16	Porcine HveC, a Member of the Highly Conserved HveC/Nectin 1 Family, Is a Functional Alphaherpesvirus Receptor. Virology, 2001, 281, 315-328.	2.4	70
17	In Vivo Role of Nectin-1 in Entry of Herpes Simplex Virus Type 1 (HSV-1) and HSV-2 through the Vaginal Mucosa. Journal of Virology, 2004, 78, 2530-2536.	3.4	70
18	Glycoprotein D Homologs in Herpes Simplex Virus Type 1, Pseudorabies Virus, and Bovine Herpes Virus Type 1 Bind Directly to Human HveC (Nectin-1) with Different Affinities. Virology, 2001, 280, 7-18.	2.4	68

CLAUDE KRUMMENACHER

#	Article	IF	CITATIONS
19	Development of a Syngenic Murine B16 Cell Line-Derived Melanoma Susceptible to Destruction by Neuroattenuated HSV-1. Molecular Therapy, 2001, 3, 160-168.	8.2	66
20	Entry of Herpesviruses into Cells: The Enigma Variations. Advances in Experimental Medicine and Biology, 2013, 790, 178-195.	1.6	65
21	Cellular Localization of Nectin-1 and Glycoprotein D during Herpes Simplex Virus Infection. Journal of Virology, 2003, 77, 8985-8999.	3.4	64
22	Dissection of the Antibody Response against Herpes Simplex Virus Glycoproteins in Naturally Infected Humans. Journal of Virology, 2014, 88, 12612-12622.	3.4	63
23	α-Herpesvirus glycoprotein D interaction with sensory neurons triggers formation of varicosities that serve as virus exit sites. Journal of Cell Biology, 2006, 174, 267-275.	5.2	56
24	Glycoprotein-Dependent and TLR2-Independent Innate Immune Recognition of Herpes Simplex Virus-1 by Dendritic Cells. Journal of Immunology, 2008, 180, 7525-7536.	0.8	53
25	Herpes Simplex Virus Glycoprotein D Interferes with Binding of Herpesvirus Entry Mediator to Its Ligands through Downregulation and Direct Competition. Journal of Virology, 2010, 84, 11646-11660.	3.4	53
26	Role of Microvesicles in the Spread of Herpes Simplex Virus 1 in Oligodendrocytic Cells. Journal of Virology, 2018, 92, .	3.4	53
27	Herpes Simplex Virus with Highly Reduced gD Levels Can Efficiently Enter and Spread between Human Keratinocytes. Journal of Virology, 2001, 75, 10309-10318.	3.4	52
28	Effects of Herpes Simplex Virus on Structure and Function of Nectin-1/HveC. Journal of Virology, 2002, 76, 2424-2433.	3.4	50
29	Nectin-1/HveC Mediates herpes simplex virus type-1 entry into primary human sensory neurons and fibroblasts. Journal of NeuroVirology, 2005, 11, 208-218.	2.1	50
30	The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D. Virology, 2008, 373, 98-111.	2.4	50
31	Engineered Disulfide Bonds in Herpes Simplex Virus Type 1 gD Separate Receptor Binding from Fusion Initiation and Viral Entry. Journal of Virology, 2008, 82, 700-709.	3.4	50
32	Localization of the gD-Binding Region of the Human Herpes Simplex Virus Receptor, HveA. Journal of Virology, 2001, 75, 171-180.	3.4	48
33	Antibody-Induced Conformational Changes in Herpes Simplex Virus Glycoprotein gD Reveal New Targets for Virus Neutralization. Journal of Virology, 2012, 86, 1563-1576.	3.4	46
34	Entry Mechanisms of Herpes Simplex Virus 1 into Murine Epidermis: Involvement of Nectin-1 and Herpesvirus Entry Mediator as Cellular Receptors. Journal of Virology, 2015, 89, 262-274.	3.4	42
35	Use of Chimeric Nectin-1(HveC)-Related Receptors to Demonstrate That Ability to Bind Alphaherpesvirus gD Is Not Necessarily Sufficient for Viral Entry. Virology, 2001, 285, 366-375.	2.4	40
36	Immunization With Fc-Based Recombinant Epstein–Barr Virus gp350 Elicits Potent Neutralizing Humoral Immune Response in a BALB/c Mice Model. Frontiers in Immunology, 2018, 9, 932.	4.8	31

CLAUDE KRUMMENACHER

#	Article	IF	CITATIONS
37	Glycoprotein D actively induces rapid internalization of two nectin-1 isoforms during herpes simplex virus entry. Virology, 2010, 399, 109-119.	2.4	30
38	Induction of conformational changes at the N-terminus of herpes simplex virus glycoprotein D upon binding to HVEM and nectin-1. Virology, 2014, 448, 185-195.	2.4	30
39	The Membrane-Proximal Region (MPR) of Herpes Simplex Virus gB Regulates Association of the Fusion Loops with Lipid Membranes. MBio, 2012, 3, .	4.1	26
40	The Effect of Cellular Differentiation on HSV-1 Infection of Oligodendrocytic Cells. PLoS ONE, 2014, 9, e89141.	2.5	25
41	Interaction between nectin-1 and the human natural killer cell receptor CD96. PLoS ONE, 2019, 14, e0212443.	2.5	24
42	The mouse mammary tumor virus long terminal repeat encodes A 47 kDa Glycoprotein with a short half-life in mammalian cells. Molecular Immunology, 1993, 30, 1151-1157.	2.2	18
43	A Key Role for Nectin-1 in the Ventral Hippocampus in Contextual Fear Memory. PLoS ONE, 2013, 8, e56897.	2.5	18
44	A novel vaccine candidate based on chimeric virus-like particle displaying multiple conserved epitope peptides induced neutralizing antibodies against EBV infection. Theranostics, 2020, 10, 5704-5718.	10.0	17
45	Localization of the Interaction Site of Herpes Simplex Virus Glycoprotein D (gD) on the Membrane Fusion Regulator, gH/gL. Journal of Virology, 2020, 94, .	3.4	14
46	Spatiotemporal changes of the herpes simplex virus entry receptor nectin-1 in murine brain during postnatal development. Journal of NeuroVirology, 2006, 12, 161-170.	2.1	9
47	Herpes Simplex Virus 1 Spread in Oligodendrocytic Cells Is Highly Dependent on MAL Proteolipid. Journal of Virology, 2020, 94, .	3.4	9
48	Herpes simplex virus glycoprotein D relocates nectin-1 from intercellular contacts. Virology, 2016, 499, 267-277.	2.4	7
49	Role of Proteolipid Protein in HSV-1 Entry in Oligodendrocytic Cells. PLoS ONE, 2016, 11, e0147885.	2.5	7
50	Regions of Mouse Mammary Tumor Virus Superantigen Involved in Interaction with the Major Histocompatibility Complex Class II I-A Molecule. Journal of Virology, 2002, 76, 11172-11175.	3.4	5
51	Virus Budding/Host Interactions. Advances in Virology, 2011, 2011, 1-2.	1.1	5
52	Saliva enhances infection of gingival fibroblasts by herpes simplex virus 1. PLoS ONE, 2019, 14, e0223299.	2.5	5
53	Lessons From the Pandemic: Engaging Wicked Problems With Transdisciplinary Deliberation. Journal of Communication Pedagogy, 2021, 5, 164-171.	0.4	1
54	α-Herpesvirus glycoprotein D interaction with sensory neurons triggers formation of varicosities that serve as virus exit sites. Journal of Experimental Medicine, 2006, 203, i20-i20.	8.5	0

#	Article	IF	CITATIONS
55	Mechanisms by Which Pathogens Hijack and Utilize Membrane Domains to Mediate Cytotoxicity. , 2011, , 153-175.		0