
Guang-Ping Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/406763/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications, 2017, 8, 944.	12.8	890
2	Rapid Synthesis of Nitrogenâ€Đoped Porous Carbon Monolith for CO ₂ Capture. Advanced Materials, 2010, 22, 853-857.	21.0	771
3	Structurally Designed Synthesis of Mechanically Stable Poly(benzoxazine-co-resol)-Based Porous Carbon Monoliths and Their Application as High-Performance CO ₂ Capture Sorbents. Journal of the American Chemical Society, 2011, 133, 11378-11388.	13.7	520
4	Temperature-Programmed Precise Control over the Sizes of Carbon Nanospheres Based on Benzoxazine Chemistry. Journal of the American Chemical Society, 2011, 133, 15304-15307.	13.7	230
5	Ionic liquid C ₁₆ mimBF ₄ assisted synthesis of poly(benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors. Energy and Environmental Science, 2013, 6, 652-659.	30.8	222
6	Stretchable and Semitransparent Conductive Hybrid Hydrogels for Flexible Supercapacitors. ACS Nano, 2014, 8, 7138-7146.	14.6	186
7	High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes. Journal of Materials Chemistry A, 2016, 4, 10166-10173.	10.3	179
8	Easy Synthesis of Hollow Polymer, Carbon, and Graphitized Microspheres. Angewandte Chemie - International Edition, 2010, 49, 1615-1618.	13.8	172
9	Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties. Energy and Environmental Science, 2013, 6, 3740.	30.8	168
10	Sandwichâ€Type Microporous Carbon Nanosheets for Enhanced Supercapacitor Performance. Advanced Energy Materials, 2013, 3, 1421-1427.	19.5	151
11	Thermal Exfoliation of Layered Metal–Organic Frameworks into Ultrahydrophilic Graphene Stacks and Their Applications in Li–S Batteries. Advanced Materials, 2017, 29, 1702829.	21.0	141
12	Novel porous solids for carbon dioxide capture. Journal of Materials Chemistry, 2011, 21, 6447.	6.7	130
13	Synthesis of Hierarchical Porous Carbon Monoliths with Incorporated Metal–Organic Frameworks for Enhancing Volumetric Based CO ₂ Capture Capability. ACS Applied Materials & Interfaces, 2012, 4, 6125-6132.	8.0	126
14	Unusual Ultraâ€Hydrophilic, Porous Carbon Cuboids for Atmosphericâ€Water Capture. Angewandte Chemie - International Edition, 2015, 54, 1941-1945.	13.8	119
15	Chemical Synthesis of Carbon Materials With Intriguing Nanostructure and Morphology. Macromolecular Chemistry and Physics, 2012, 213, 1107-1131.	2.2	115
16	Can Carbon Spheres Be Created through the Stöber Method?. Angewandte Chemie - International Edition, 2011, 50, 9023-9025.	13.8	114
17	The Importance of Pore Size and Surface Polarity for Polysulfide Adsorption in Lithium Sulfur Batteries. Advanced Materials Interfaces, 2016, 3, 1600508.	3.7	76
18	Tubular structured ordered mesoporous carbon as an efficient sorbent for the removal of dyes from aqueous solutions. Carbon, 2010, 48, 3330-3339.	10.3	75

GUANG-PING HAO

#	Article	IF	CITATIONS
19	Advances in Post ombustion CO ₂ Capture by Physical Adsorption: From Materials Innovation to Separation Practice. ChemSusChem, 2021, 14, 1428-1471.	6.8	75
20	Porous materials for carbon dioxide capture. Annual Reports on the Progress of Chemistry Section A, 2013, 109, 484.	0.8	73
21	Lysine-assisted rapid synthesis of crack-free hierarchical carbon monoliths with a hexagonal array of mesopores. Carbon, 2011, 49, 3762-3772.	10.3	66
22	Perfect proton selectivity in ion transport through two-dimensional crystals. Nature Communications, 2019, 10, 4243.	12.8	60
23	Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction. Chemical Communications, 2015, 51, 17285-17288.	4.1	56
24	Proton and Li-Ion Permeation through Graphene with Eight-Atom-Ring Defects. ACS Nano, 2020, 14, 7280-7286.	14.6	55
25	An Asymmetric Supercapacitor–Diode (CAPode) for Unidirectional Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 13060-13065.	13.8	49
26	Atomically thin micas as proton-conducting membranes. Nature Nanotechnology, 2019, 14, 962-966.	31.5	45
27	Ion exchange in atomically thin clays and micas. Nature Materials, 2021, 20, 1677-1682.	27.5	40
28	Monolithic Carbons with Tailored Crystallinity and Porous Structure as Lithium-Ion Anodes for Fundamental Understanding Their Rate Performance and Cycle Stability. Journal of Physical Chemistry C, 2012, 116, 10303-10311.	3.1	38
29	Bimetallic Au–Pd Nanoparticles Confined in Tubular Mesoporous Carbon as Highly Selective and Reusable Benzyl Alcohol Oxidation Catalysts. ChemCatChem, 2012, 4, 1595-1602.	3.7	36
30	Nitrogen doped carbide derived carbon aerogels by chlorine etching of a SiCN aerogel. Journal of Materials Chemistry A, 2016, 4, 4525-4533.	10.3	36
31	Design of Hierarchically Porous Carbons with Interlinked Hydrophilic and Hydrophobic Surface and Their Capacitive Behavior. Chemistry of Materials, 2016, 28, 8715-8725.	6.7	35
32	Selfâ€Pillared Ultramicroporous Carbon Nanoplates for Selective Separation of CH ₄ /N ₂ . Angewandte Chemie - International Edition, 2021, 60, 6339-6343.	13.8	35
33	Wiggling Mesopores Kinetically Amplify the Adsorptive Separation of Propylene/Propane. Angewandte Chemie - International Edition, 2021, 60, 19063-19067.	13.8	31
34	Design of Threeâ€Dimensional Porous Carbon Materials: From Static to Dynamic Skeletons. Angewandte Chemie - International Edition, 2013, 52, 7930-7932.	13.8	30
35	Highly dispersed metal and oxide nanoparticles on ultra-polar carbon as efficient cathode materials for Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 6284-6291.	10.3	29
36	Nanocasting in ball mills – combining ultra-hydrophilicity and ordered mesoporosity in carbon materials. Journal of Materials Chemistry A, 2018, 6, 859-865.	10.3	29

GUANG-PING HAO

#	Article	IF	CITATIONS
37	Selfâ€Pillared Ultramicroporous Carbon Nanoplates for Selective Separation of CH ₄ /N ₂ . Angewandte Chemie, 2021, 133, 6409-6413.	2.0	28
38	Nitrogen and boron doped carbon layer coated multiwall carbon nanotubes as high performance anode materials for lithium ion batteries. Scientific Reports, 2021, 11, 5633.	3.3	20
39	Rapid synthesis of foam-like mesoporous carbon monolith using an ultrasound-assisted air bubbling strategy. Carbon, 2013, 62, 322-329.	10.3	19
40	Intensified coupled electrolysis of CO2 and brine over electrocatalysts with ordered mesoporous transport channels. Chemical Engineering Journal, 2022, 438, 135500.	12.7	19
41	Recent Advances of Porous Solids for Ultradilute CO2 Capture. Chemical Research in Chinese Universities, 2022, 38, 18-30.	2.6	18
42	Confined nanospace pyrolysis: A versatile strategy to create hollow structured porous carbons. Nano Research, 2021, 14, 3159-3173.	10.4	15
43	A comparative study of nitrogen-doped hierarchical porous carbon monoliths as electrodes for supercapacitors. New Carbon Materials, 2011, 26, 197-203.	6.1	14
44	Direct synthesis of carbide-derived carbon monoliths with hierarchical pore design by hard-templating. Journal of Materials Chemistry A, 2014, 2, 12703-12707.	10.3	13
45	Construction of Confined Bifunctional 2D Material for Efficient Sulfur Resource Recovery and Hg ²⁺ Adsorption in Desulfurization. Environmental Science & Technology, 2022, 56, 4531-4541.	10.0	13
46	Porous Carbons for Carbon Dioxide Capture. Green Chemistry and Sustainable Technology, 2014, , 15-77.	0.7	12
47	Design of Functional Nanostructured Carbons for Advanced Heterogeneous Catalysts: A Review. Current Organic Chemistry, 2014, 18, 1262-1279.	1.6	12
48	Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting. New Carbon Materials, 2022, 37, 237-244.	6.1	9
49	Recent Advances in Carbon-Based Adsorbents for Adsorptive Separation of Light Hydrocarbons. Research, 2022, 2022, .	5.7	8
50	Marked enhancement of electrocatalytic activities for gas-consuming reactions by bimodal mesopores. Journal of Materials Chemistry A, 2021, 9, 17821-17829.	10.3	7
51	Targeted Synthesis of Antiâ€Hydrolysis 2Dâ€ZIF Laminates with Superâ€Hydrophobic Transport Channels via In Situ Phase Transition Strategy. Advanced Functional Materials, 2022, 32, .	14.9	7
52	An Asymmetric Supercapacitor–Diode (CAPode) for Unidirectional Energy Storage. Angewandte Chemie, 2019, 131, 13194-13199.	2.0	6
53	Wiggling Mesopores Kinetically Amplify the Adsorptive Separation of Propylene/Propane. Angewandte Chemie, 2021, 133, 19211-19215.	2.0	2
54	Adsorption and Release Behavior of Vitamin B12 in Tubular Structured Ordered Mesoporous Carbon. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2011, 27, 2239-2243.	4.9	2

#	Article	IF	CITATIONS
55	Nanostructured Carbons and Related Materials Derived From Polybenzoxazine-Based Polymers. , 2017, , 621-642.		1
56	Asymmetric heterojunctions between size different 2D flakes intensify the ionic diode behaviour. Chemical Communications, 2022, 58, 5626-5629.	4.1	1