Sonja Wipf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4067520/publications.pdf Version: 2024-02-01

SONIA WIDE

#	Article	IF	CITATIONS
1	Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 2011, 6, 045509.	5.2	1,021
2	Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2012, 2, 453-457.	18.8	745
3	Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 2018, 556, 231-234.	27.8	580
4	Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19456-19459.	7.1	464
5	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
6	Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change, 2015, 5, 887-891.	18.8	447
7	Complexity revealed in the greening of the Arctic. Nature Climate Change, 2020, 10, 106-117.	18.8	447
8	Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change, 2009, 94, 105-121.	3.6	353
9	A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Research, 2010, 29, 95-109.	1.6	316
10	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	5.8	289
11	Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecology Letters, 2014, 17, 193-202.	6.4	274
12	Effects of ski piste preparation on alpine vegetation. Journal of Applied Ecology, 2005, 42, 306-316.	4.0	178
13	Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628-629, 1369-1394.	8.0	177
14	Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecology Letters, 2013, 16, 478-486.	6.4	151
15	Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia, 2014, 175, 219-229.	2.0	139
16	Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations. Plant Ecology, 2010, 207, 53-66.	1.6	137
17	Advanced snowmelt causes shift towards positive neighbour interactions in a subarctic tundra community. Global Change Biology, 2006, 12, 1496-1506.	9.5	136
18	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	9.5	122

SONJA WIPF

#	Article	IF	CITATIONS
19	Effect of low-intensity grazing on the species-rich vegetation of traditionally mown subalpine meadows. Biological Conservation, 2002, 104, 1-11.	4.1	119
20	Methods for measuring arctic and alpine shrub growth: A review. Earth-Science Reviews, 2015, 140, 1-13.	9.1	112
21	Short-term responses of ecosystem carbon fluxes to experimental soil warming at the Swiss alpine treeline. Biogeochemistry, 2010, 97, 7-19.	3.5	111
22	Identifying the driving factors behind observed elevational range shifts on <scp>E</scp> uropean mountains. Global Ecology and Biogeography, 2014, 23, 876-884.	5.8	110
23	The snow and the willows: earlier spring snowmelt reduces performance in the lowâ€lying alpine shrub <i>Salix herbacea</i> . Journal of Ecology, 2016, 104, 1041-1050.	4.0	110
24	Phenological and elevational shifts of plants, animals and fungi under climate change in the <scp>E</scp> uropean <scp>A</scp> lps. Biological Reviews, 2021, 96, 1816-1835.	10.4	102
25	Small-scale patterns in snowmelt timing affect gene flow and the distribution of genetic diversity in the alpine dwarf shrub Salix herbacea. Heredity, 2014, 113, 233-239.	2.6	101
26	The Response of the Alpine Dwarf Shrub Salix herbacea to Altered Snowmelt Timing: Lessons from a Multi-Site Transplant Experiment. PLoS ONE, 2015, 10, e0122395.	2.5	101
27	Evolutionary potential in the Alpine: trait heritabilities and performance variation of the dwarf willow <i>Salix herbacea</i> from different elevations and microhabitats. Ecology and Evolution, 2016, 6, 3940-3952.	1.9	98
28	Soil warming alters microbial substrate use in alpine soils. Global Change Biology, 2014, 20, 1327-1338.	9.5	97
29	Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biological Conservation, 2021, 263, 109175.	4.1	96
30	Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environmental Research Letters, 2013, 8, 024043.	5.2	95
31	The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecology and Diversity, 2013, 6, 447-455.	2.4	84
32	Warming shortens flowering seasons of tundra plant communities. Nature Ecology and Evolution, 2019, 3, 45-52.	7.8	79
33	The Soil Microbiome of GLORIA Mountain Summits in the Swiss Alps. Frontiers in Microbiology, 2019, 10, 1080.	3.5	78
34	Evidence of enhanced freezing damage in treeline plants during six years of CO ₂ enrichment and soil warming. Oikos, 2012, 121, 1532-1543.	2.7	77
35	Using historical plant surveys to track biodiversity on mountain summits. Plant Ecology and Diversity, 2011, 4, 415-425.	2.4	72
36	Growth and community responses of alpine dwarf shrubs to <i>in situ</i> CO ₂ enrichment and soil warming. New Phytologist, 2011, 191, 806-818.	7.3	66

SONJA WIPF

#	Article	IF	CITATIONS
37	Altered Snow Density and Chemistry Change Soil Nitrogen Mineralization and Plant Growth. Arctic, Antarctic, and Alpine Research, 2008, 40, 568-575.	1.1	65
38	With a little help from my friends: Community facilitation increases performance in the dwarf shrub Salix herbacea. Basic and Applied Ecology, 2015, 16, 202-209.	2.7	59
39	Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.	5.8	57
40	Winter climate change at different temporal scales in Vaccinium myrtillus, an Arctic and alpine dwarf shrub. Polar Research, 2010, 29, 85-94.	1.6	55
41	Long-term impacts of ski piste management on alpine vegetation and soils. Journal of Applied Ecology, 2011, 48, 906-915.	4.0	54
42	Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11, 1351.	12.8	52
43	Enough space in a warmer world? Microhabitat diversity and smallâ€scale distribution of alpine plants on mountain summits. Diversity and Distributions, 2018, 24, 252-261.	4.1	49
44	Traditional plant functional groups explain variation in economic but not sizeâ€related traits across the tundra biome. Global Ecology and Biogeography, 2019, 28, 78-95.	5.8	49
45	Observation bias and its causes in botanical surveys on highâ€alpine summits. Journal of Vegetation Science, 2015, 26, 191-200.	2.2	43
46	Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arctic Science, 2022, 8, 572-608.	2.3	43
47	Directional turnover towards largerâ€ranged plants over time and across habitats. Ecology Letters, 2022, 25, 466-482.	6.4	39
48	Snow cover, freezeâ€ŧhaw, and the retention of nutrients in an oceanic mountain ecosystem. Ecosphere, 2015, 6, 1-16.	2.2	37
49	Growth and Phenology of Three Dwarf Shrub Species in a Six-Year Soil Warming Experiment at the Alpine Treeline. PLoS ONE, 2014, 9, e100577.	2.5	36
50	Non-equilibrium in Alpine Plant Assemblages: Shifts in Europe's Summit Floras. Advances in Global Change Research, 2017, , 285-303.	1.6	28
51	Faster, higher, more? Past, present and future dynamics of alpine and arctic flora under climate change. Alpine Botany, 2014, 124, 77-79.	2.4	24
52	Twelve years of low nutrient input stimulates growth of trees and dwarf shrubs in the treeline ecotone. Journal of Ecology, 2019, 107, 768-780.	4.0	23
53	Dimension and impact of biases in funding for species and habitat conservation. Biological Conservation, 2022, 272, 109636.	4.1	23
54	Intraspecific trait variation in alpine plants relates to their elevational distribution. Journal of Ecology, 2022, 110, 860-875.	4.0	21

SONJA WIPF

#	Article	IF	CITATIONS
55	Management, winter climate and plant–soil feedbacks on ski slopes: a synthesis. Ecological Research, 2014, 29, 583-592.	1.5	20
56	Bud freezing resistance in alpine shrubs across snow depth gradients. Environmental and Experimental Botany, 2015, 118, 95-101.	4.2	20
57	Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes. Frontiers in Forests and Global Change, 2021, 4, .	2.3	20
58	Local trampling disturbance effects on alpine plant populations and communities: Negative implications for climate change vulnerability. Ecology and Evolution, 2018, 8, 7921-7935.	1.9	13
59	A common soil temperature threshold for the upper limit of alpine grasslands in European mountains. Alpine Botany, 2021, 131, 41-52.	2.4	13
60	Human trampling disturbance exerts different ecological effects at contrasting elevational range limits. Journal of Applied Ecology, 2019, 56, 1389-1399.	4.0	12
61	Climate Change Affects Vegetation Differently on Siliceous and Calcareous Summits of the European Alps. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	12
62	Two decades of altered snow cover does not affect soil microbial ability to catabolize carbon compounds in an oceanic alpine heath. Soil Biology and Biochemistry, 2018, 124, 101-104.	8.8	9
63	The tundra phenology database: more than two decades of tundra phenology responses to climate change. Arctic Science, 2022, 8, 1026-1039.	2.3	7
64	Climate change and extreme events – their impacts on alpine and arctic ecosystem structure and function. Plant Ecology and Diversity, 2013, 6, 303-306.	2.4	6
65	Plant and vegetation responses to a changing environment: an alpine issue. Botanica Helvetica, 2010, 120, 83-84.	1.1	4
66	International Young Scientists' perspective on global change issues. Climatic Change, 2009, 94, 1-4.	3.6	2
67	High resolution species distribution and abundance models cannot predict separate shrub datasets in adjacent Arctic fjords. Diversity and Distributions, 2022, 28, 956-975.	4.1	0