
Steven A W Andersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4067444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Am I doing this right? Structured self-assessment during simulation training of mastoidectomy improves cadaver dissection performance: a prospective educational study. European Archives of Oto-Rhino-Laryngology, 2023, 280, 97-103.	1.6	2
2	Assessing competence in cochlear implant surgery using the newly developed Cochlear Implant Surgery Assessment Tool. European Archives of Oto-Rhino-Laryngology, 2022, 279, 127-136.	1.6	7
3	Standard Setting in Simulation-based Training of Surgical Procedures. Annals of Surgery, 2022, 275, 872-882.	4.2	12
4	Automated Calculation of Cochlear Implant Electrode Insertion Parameters in Clinical Cone-Beam CT. Otology and Neurotology, 2022, 43, 199-205.	1.3	4
5	Cochlear implantation: Exploring the effects of 3D stereovision in a digital microscope for virtual reality simulation training – A randomized controlled trial. Cochlear Implants International, 2022, 23, 80-86.	1.2	1
6	The cutting edge of customized surgery: 3D-printed models for patient-specific interventions in otology and auricular management—a systematic review. European Archives of Oto-Rhino-Laryngology, 2022, 279, 3269-3288.	1.6	2
7	Content validity evidence for a simulation-based test of handheld otoscopy skills. European Archives of Oto-Rhino-Laryngology, 2021, 278, 2313-2320.	1.6	5
8	Segmentation of Temporal Bone Anatomy for Patient-Specific Virtual Reality Simulation. Annals of Otology, Rhinology and Laryngology, 2021, 130, 724-730.	1.1	8
9	Evidence of Mobile Applications in Otolaryngology Targeted at Patients. Annals of Otology, Rhinology and Laryngology, 2021, 130, 118-118.	1.1	1
10	Atlas-based segmentation of cochlear microstructures in cone beam CT. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 363-373.	2.8	4
11	Current Status of Handheld Otoscopy Training: A Systematic Review. Annals of Otology, Rhinology and Laryngology, 2021, 130, 1190-1197.	1.1	2
12	3Dâ€Printed Models for Temporal Bone Surgical Training: A Systematic Review. Otolaryngology - Head and Neck Surgery, 2021, 165, 617-625.	1.9	17
13	Patientâ€specific Virtual Temporal Bone Simulation Based on Clinical Coneâ€beam Computed Tomography. Laryngoscope, 2021, 131, 1855-1862.	2.0	10
14	OpenEar Image Data Enables Case Variation in High Fidelity Virtual Reality Ear Surgery. Otology and Neurotology, 2021, 42, 1245-1252.	1.3	8
15	Use of simulation-based training of surgical technical skills among ENTs: an international YO-IFOS survey. European Archives of Oto-Rhino-Laryngology, 2021, 278, 5043-5050.	1.6	11
16	Use of Generalizability Theory for Exploring Reliability of and Sources of Variance in Assessment of Technical Skills: A Systematic Review and Meta-Analysis. Academic Medicine, 2021, 96, 1609-1619.	1.6	6
17	A Structured Facial Feminization Fresh Tissue Surgical Simulation Laboratory Improves Trainee Confidence and Knowledge. Plastic and Reconstructive Surgery, 2021, 147, 1070e-1071e.	1.4	0
18	Cochlear implant surgery: Learning curve in virtual reality simulation training and transfer of skills to a 3D-printed temporal bone – A prospective trial. Cochlear Implants International, 2021, 22, 330-337.	1.2	10

#	Article	IF	CITATIONS
19	Effect of 3Dâ€Printed Models on Cadaveric Dissection in Temporal Bone Training. OTO Open, 2021, 5, 2473974X211065012.	1.4	9
20	Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: a randomized trial. Surgical Endoscopy and Other Interventional Techniques, 2020, 34, 1244-1252.	2.4	139
21	Understanding the effects of structured self-assessment in directed, self-regulated simulation-based training of mastoidectomy: A mixed methods study. Journal of Otology, 2020, 15, 117-123.	1.0	7
22	Standard Setting of Competency in Mastoidectomy for the Cross-Institutional Mastoidectomy Assessment Tool. Annals of Otology, Rhinology and Laryngology, 2020, 129, 340-346.	1.1	2
23	Letter to the Editor: Design and fabrication of a generic 3D-printed silicone unilateral cleft lip and palate model. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2020, 73, 608-620.	1.0	0
24	Decentralized Virtual Reality Training of Mastoidectomy Improves Cadaver Dissection Performance: A Prospective, Controlled Cohort Study. Otology and Neurotology, 2020, 41, 476-481.	1.3	21
25	Design and validation of a crossâ€specialty simulationâ€based training course in basic robotic surgical skills. International Journal of Medical Robotics and Computer Assisted Surgery, 2020, 16, 1-10.	2.3	11
26	Letter on "3D printed patient individualized models versus cadaveric models in an undergraduate Oral and Maxillofacial Surgery Curriculum: Comparison of student's perceptions― European Journal of Dental Education, 2020, 24, 807-808.	2.0	0
27	Developing a national e-learning course in otorhinolaryngology: the Danish experience. European Archives of Oto-Rhino-Laryngology, 2020, 277, 1829-1836.	1.6	3
28	Development and Validation of an Assessment Tool for Technical Skills in Handheld Otoscopy. Annals of Otology, Rhinology and Laryngology, 2020, 129, 715-721.	1.1	7
29	The Effect of Simulator-Integrated Tutoring for Guidance in Virtual Reality Simulation Training. Simulation in Healthcare, 2020, 15, 147-153.	1.2	11
30	Ultra-high-fidelity virtual reality mastoidectomy simulation training: a randomized, controlled trial. European Archives of Oto-Rhino-Laryngology, 2020, 277, 1335-1341.	1.6	25
31	Reliable Assessment of Surgical Technical Skills Is Dependent on Context: An Exploration of Different Variables Using Generalizability Theory. Academic Medicine, 2020, 95, 1929-1936.	1.6	12
32	Decentralized virtual reality mastoidectomy simulation training: a prospective, mixed-methods study. European Archives of Oto-Rhino-Laryngology, 2019, 276, 2783-2789.	1.6	15
33	The effect of structured self-assessment in virtual reality simulation training of mastoidectomy. European Archives of Oto-Rhino-Laryngology, 2019, 276, 3345-3352.	1.6	23
34	Expert sampling of VR simulator metrics for automated assessment of mastoidectomy performance. Laryngoscope, 2019, 129, 2170-2177.	2.0	15
35	Identifying and prioritizing technical procedures in otorhinolaryngology for simulation-based training: a national needs assessment in Denmark. European Archives of Oto-Rhino-Laryngology, 2019, 276, 1517-1524.	1.6	5
36	Failure affects subjective estimates of cognitive load through a negative carry-over effect in virtual reality simulation of hip fracture surgery. Advances in Simulation, 2019, 4, 26.	2.3	8

STEVEN A W ANDERSEN

#	Article	IF	CITATIONS
37	Performance metrics in mastoidectomy training: a systematic review. European Archives of Oto-Rhino-Laryngology, 2019, 276, 657-664.	1.6	12
38	European status on temporal bone training: a questionnaire study. European Archives of Oto-Rhino-Laryngology, 2018, 275, 357-363.	1.6	38
39	Authors' response to Commentary on "European status on temporal bone training: a questionnaire study― European Archives of Oto-Rhino-Laryngology, 2018, 275, 1351-1351.	1.6	Ο
40	Validity evidence for procedural competency in virtual reality robotic simulation, establishing a credible pass/fail standard for the vaginal cuff closure procedure. Surgical Endoscopy and Other Interventional Techniques, 2018, 32, 4200-4208.	2.4	16
41	The Effect of a Distributed Virtual Reality Simulation Training Program on Dissection Mastoidectomy Performance. Otology and Neurotology, 2018, 39, 1277-1284.	1.3	28
42	The effect of distributed virtual reality simulation training on cognitive load during subsequent dissection training. Medical Teacher, 2018, 40, 684-689.	1.8	35
43	Mapping the plateau of novices in virtual reality simulation training of mastoidectomy. Laryngoscope, 2017, 127, 907-914.	2.0	31
44	Otologic Skills Training. Otolaryngologic Clinics of North America, 2017, 50, 933-945.	1.1	26
45	Cognitive load in distributed and massed practice in virtual reality mastoidectomy simulation. Laryngoscope, 2016, 126, E74-9.	2.0	62
46	The effect of selfâ€directed virtual reality simulation on dissection training performance in mastoidectomy. Laryngoscope, 2016, 126, 1883-1888.	2.0	49
47	Retention of Mastoidectomy Skills After Virtual Reality Simulation Training. JAMA Otolaryngology - Head and Neck Surgery, 2016, 142, 635.	2.2	32
48	The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial. Advances in Simulation, 2016, 1, 20.	2.3	31
49	Hearing Results After Tympanoplasty Are Stable Short-term. Otology and Neurotology, 2016, 37, 1335-1343.	1.3	2
50	Cognitive Load in Mastoidectomy Skills Training: Virtual Reality Simulation and Traditional Dissection Compared. Journal of Surgical Education, 2016, 73, 45-50.	2.5	57
51	Notes From the Field. Evaluation and the Health Professions, 2016, 39, 114-120.	1.9	9
52	Virtual reality simulation training of mastoidectomy - studies on novice performance. Danish Medical Journal, 2016, 63, .	0.5	5
53	Learning Curves of Virtual Mastoidectomy in Distributed and Massed Practice. JAMA Otolaryngology - Head and Neck Surgery, 2015, 141, 1.	2.2	51
54	Mastoidectomy performance assessment of virtual simulation training using finalâ€product analysis. Laryngoscope, 2015, 125, 431-435.	2.0	53

STEVEN A W ANDERSEN

#	Article	IF	CITATIONS
55	Carcinome épidermoÃ⁻de temporal primitif diagnostiqué par biopsie de l'artère temporale superficielle. Annales Francaises D'Oto-Rhino-Laryngologie Et De Pathologie Cervico-Faciale, 2015, 132, 88-89.	0.0	0
56	Primary temporal region squamous cell carcinoma diagnosed by a superficial temporal artery biopsy. European Annals of Otorhinolaryngology, Head and Neck Diseases, 2015, 132, 91-92.	0.7	2
57	The stability of short-term hearing outcome after stapedotomy: a prospective database study. Acta Oto-Laryngologica, 2015, 135, 871-879.	0.9	8
58	Cross-platform digital assessment forms for evaluating surgical skills. Journal of Educational Evaluation for Health Professions, 2015, 12, 13.	12.6	1
59	Graft Take-Rates After Tympanoplasty. Otology and Neurotology, 2014, 35, e292-e297.	1.3	24
60	How to exhaust your bone marrow. BMJ Case Reports, 2013, 2013, bcr2013009210-bcr2013009210.	0.5	2
61	Novices perform better in virtual reality simulation than in traditional cadaveric dissection training of mastoidectomy. Journal of Surgical Simulation, 0, 2, .	0.0	3