## Noah J Planavsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/406700/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The rise of oxygen in Earth's early ocean and atmosphere. Nature, 2014, 506, 307-315.                                                                                                                                               | 13.7 | 1,966     |
| 2  | The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease.<br>Nature Medicine, 2015, 21, 263-269.                                                                                             | 15.2 | 1,400     |
| 3  | Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 2014, 346, 635-638.                                                                                                                         | 6.0  | 594       |
| 4  | Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nature<br>Geoscience, 2014, 7, 283-286.                                                                                                 | 5.4  | 444       |
| 5  | Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 2012, 489, 546-549.                                                                                                                                               | 13.7 | 420       |
| 6  | Proterozoic ocean redox and biogeochemical stasis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5357-5362.                                                                           | 3.3  | 418       |
| 7  | Evolution of the global phosphorus cycle. Nature, 2017, 541, 386-389.                                                                                                                                                               | 13.7 | 397       |
| 8  | Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature, 2011, 477, 448-451.                                                                                                                                           | 13.7 | 385       |
| 9  | Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations<br>revisited: New perspectives on the significance and mechanisms of deposition. Geochimica Et<br>Cosmochimica Acta, 2010, 74, 6387-6405. | 1.6  | 373       |
| 10 | The evolution of the marine phosphate reservoir. Nature, 2010, 467, 1088-1090.                                                                                                                                                      | 13.7 | 361       |
| 11 | Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature, 2011, 478, 369-373.                                                                                                             | 13.7 | 299       |
| 12 | Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science, 2016, 352, 444-447.                                                                                                                  | 6.0  | 269       |
| 13 | A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology, 2016, 44, 555-558.                                                                                                                      | 2.0  | 228       |
| 14 | Earth's oxygen cycle and the evolution of animal life. Proceedings of the National Academy of<br>Sciences of the United States of America, 2016, 113, 8933-8938.                                                                    | 3.3  | 205       |
| 15 | Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth and Planetary Science Letters, 2017, 466, 12-19.                                                                                  | 1.8  | 203       |
| 16 | A highly redox-heterogeneous ocean in South China during the early Cambrian (â^1⁄4529–514ÂMa):<br>Implications for biota-environment co-evolution. Earth and Planetary Science Letters, 2016, 441, 38-51.                           | 1.8  | 198       |
| 17 | Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109,<br>18300-18305.                     | 3.3  | 174       |
| 18 | The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice. Numerische<br>Mathematik, 2018, 318, 491-526.                                                                                                   | 0.7  | 174       |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth and Planetary Science Letters, 2017, 463, 159-170.                                                              | 1.8  | 172       |
| 20 | Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth and Planetary Science Letters, 2009, 286, 230-242.                                                                      | 1.8  | 166       |
| 21 | Stepwise oxygenation of the Paleozoic atmosphere. Nature Communications, 2018, 9, 4081.                                                                                                                                     | 5.8  | 166       |
| 22 | Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature, 2018, 560, 471-475.                                                                                                                | 13.7 | 149       |
| 23 | Iron isotope composition of some Archean and Proterozoic iron formations. Geochimica Et<br>Cosmochimica Acta, 2012, 80, 158-169.                                                                                            | 1.6  | 147       |
| 24 | Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature, 2018, 559, 613-616.                                                                                                                | 13.7 | 144       |
| 25 | Evidence for a prolonged Permian–Triassic extinction interval from global marine mercury records.<br>Nature Communications, 2019, 10, 1563.                                                                                 | 5.8  | 136       |
| 26 | Trace elements at the intersection of marine biological and geochemical evolution. Earth-Science Reviews, 2016, 163, 323-348.                                                                                               | 4.0  | 135       |
| 27 | Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin. Earth and Planetary Science Letters, 2019, 511, 130-140.                                               | 1.8  | 134       |
| 28 | New age constraints for the Proterozoic Aravalli–Delhi successions of India and their implications.<br>Precambrian Research, 2013, 238, 120-128.                                                                            | 1.2  | 133       |
| 29 | Protracted development of bioturbation through the early Palaeozoic Era. Nature Geoscience, 2015, 8, 865-869.                                                                                                               | 5.4  | 123       |
| 30 | Global water cycle and the coevolution of the Earth's interior and surface environment.<br>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375,<br>20150393.                   | 1.6  | 119       |
| 31 | Iron isotopes in an Archean ocean analogue. Geochimica Et Cosmochimica Acta, 2014, 133, 443-462.                                                                                                                            | 1.6  | 118       |
| 32 | Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early<br>Paleoproterozoic seawater sulfate reservoir. Earth and Planetary Science Letters, 2014, 389, 95-104.                            | 1.8  | 118       |
| 33 | Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous<br>Chicxulub impact. Proceedings of the National Academy of Sciences of the United States of America,<br>2019, 116, 22500-22504. | 3.3  | 116       |
| 34 | An iodine record of Paleoproterozoic surface ocean oxygenation. Geology, 2014, 42, 619-622.                                                                                                                                 | 2.0  | 111       |
| 35 | The isotopic composition of authigenic chromium in anoxic marine sediments: A case study from the<br>Cariaco Basin. Earth and Planetary Science Letters, 2014, 407, 9-18.                                                   | 1.8  | 99        |
| 36 | Marine redox fluctuation as a potential trigger for the Cambrian explosion. Geology, 2018, 46, 587-590.                                                                                                                     | 2.0  | 97        |

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature, 2013, 497, 100-103.                                                                                                                                                | 13.7 | 96        |
| 38 | A new estimate of detrital redox-sensitive metal concentrations and variability in fluxes to marine sediments. Geochimica Et Cosmochimica Acta, 2017, 215, 337-353.                                                                           | 1.6  | 96        |
| 39 | Cobalt and marine redox evolution. Earth and Planetary Science Letters, 2014, 390, 253-263.                                                                                                                                                   | 1.8  | 95        |
| 40 | The effects of diagenesis on geochemical paleoredox proxies in sedimentary carbonates. Geochimica Et<br>Cosmochimica Acta, 2018, 232, 265-287.                                                                                                | 1.6  | 92        |
| 41 | Mercury evidence of intense volcanic effects on land during the Permian-Triassic transition. Geology, 2019, 47, 1117-1121.                                                                                                                    | 2.0  | 89        |
| 42 | Oxygenation, Life, and the Planetary System during Earth's Middle History: An Overview. Astrobiology, 2021, 21, 906-923.                                                                                                                      | 1.5  | 85        |
| 43 | Bioavailability of zinc in marine systems through time. Nature Geoscience, 2013, 6, 125-128.                                                                                                                                                  | 5.4  | 84        |
| 44 | The chromium isotope composition of reducing and oxic marine sediments. Geochimica Et<br>Cosmochimica Acta, 2016, 184, 1-19.                                                                                                                  | 1.6  | 83        |
| 45 | Constraints on Paleoproterozoic atmospheric oxygen levels. Proceedings of the National Academy of<br>Sciences of the United States of America, 2018, 115, 8104-8109.                                                                          | 3.3  | 83        |
| 46 | On the $co\hat{a} \in e$ volution of surface oxygen levels and animals. Geobiology, 2020, 18, 260-281.                                                                                                                                        | 1.1  | 82        |
| 47 | The geologic history of seawater oxygen isotopes from marine iron oxides. Science, 2019, 365, 469-473.                                                                                                                                        | 6.0  | 81        |
| 48 | Mercury enrichments provide evidence of Early Triassic volcanism following the end-Permian mass extinction. Earth-Science Reviews, 2019, 195, 191-212.                                                                                        | 4.0  | 81        |
| 49 | Evolution of the Global Carbon Cycle and Climate Regulation on Earth. Global Biogeochemical Cycles, 2020, 34, e2018GB006061.                                                                                                                  | 1.9  | 78        |
| 50 | Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration. Chemical Geology, 2016, 423, 19-33.                                                                               | 1.4  | 77        |
| 51 | Compensatory Distal Reabsorption Drives Diuretic Resistance in Human Heart Failure. Journal of the<br>American Society of Nephrology: JASN, 2017, 28, 3414-3424.                                                                              | 3.0  | 75        |
| 52 | Redox-independent chromium isotope fractionation induced by ligand-promoted dissolution. Nature<br>Communications, 2017, 8, 1590.                                                                                                             | 5.8  | 75        |
| 53 | Evidence for episodic oxygenation in a weakly redox-buffered deep mid-Proterozoic ocean. Chemical Geology, 2018, 483, 581-594.                                                                                                                | 1.4  | 73        |
| 54 | Marine redox conditions in the middle Proterozoic ocean and isotopic constraints on authigenic carbonate formation: Insights from the Chuanlinggou Formation, Yanshan Basin, North China. Geochimica Et Cosmochimica Acta, 2015, 150, 90-105. | 1.6  | 71        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Two pulses of oceanic environmental disturbance during the Permian–Triassic boundary crisis. Earth<br>and Planetary Science Letters, 2016, 443, 139-152.                                                                        | 1.8  | 71        |
| 56 | Chromium isotope systematics in the Connecticut River. Chemical Geology, 2017, 456, 98-111.                                                                                                                                     | 1.4  | 69        |
| 57 | Tracking the rise of eukaryotes to ecological dominance with zinc isotopes. Geobiology, 2018, 16, 341-352.                                                                                                                      | 1.1  | 65        |
| 58 | A case for low atmospheric oxygen levels during Earth's middle history. Emerging Topics in Life<br>Sciences, 2018, 2, 149-159.                                                                                                  | 1.1  | 64        |
| 59 | An evaluation of sedimentary molybdenum and iron as proxies for pore fluid paleoredox conditions.<br>Numerische Mathematik, 2018, 318, 527-556.                                                                                 | 0.7  | 63        |
| 60 | Uranium isotopes in marine carbonates as a global ocean paleoredox proxy: A critical review.<br>Geochimica Et Cosmochimica Acta, 2020, 287, 27-49.                                                                              | 1.6  | 63        |
| 61 | Felsic volcanism as a factor driving the end-Permian mass extinction. Science Advances, 2021, 7, eabh1390.                                                                                                                      | 4.7  | 63        |
| 62 | Persistent global marine euxinia in the early Silurian. Nature Communications, 2020, 11, 1804.                                                                                                                                  | 5.8  | 61        |
| 63 | Ediacaran Marine Redox Heterogeneity and Early Animal Ecosystems. Scientific Reports, 2015, 5, 17097.                                                                                                                           | 1.6  | 59        |
| 64 | Chemostratigraphy of the Shaler Supergroup, Victoria Island, NW Canada: A record of ocean composition prior to the Cryogenian glaciations. Precambrian Research, 2015, 263, 232-245.                                            | 1.2  | 59        |
| 65 | Two-step deoxygenation at the end of the Paleoproterozoic Lomagundi Event. Earth and Planetary<br>Science Letters, 2018, 486, 70-83.                                                                                            | 1.8  | 58        |
| 66 | The Molybdenum Isotope System as a Tracer of Slab Input in Subduction Zones: An Example From<br>Martinique, Lesser Antilles Arc. Geochemistry, Geophysics, Geosystems, 2017, 18, 4674-4689.                                     | 1.0  | 57        |
| 67 | Mercury fluxes record regional volcanism in the South China craton prior to the end-Permian mass extinction. Geology, 2021, 49, 452-456.                                                                                        | 2.0  | 57        |
| 68 | A lithium-isotope perspective on the evolution of carbon and silicon cycles. Nature, 2021, 595, 394-398.                                                                                                                        | 13.7 | 56        |
| 69 | Integrated geochemical-petrographic insights from component-selective δ <sup>238</sup> U of<br>Cryogenian marine carbonates. Geology, 2016, 44, 935-938.                                                                        | 2.0  | 52        |
| 70 | A Mesoarchean shift in uranium isotope systematics. Geochimica Et Cosmochimica Acta, 2018, 238,<br>438-452.                                                                                                                     | 1.6  | 52        |
| 71 | Multiple negative molybdenum isotope excursions in the Doushantuo Formation (South China)<br>fingerprint complex redox-related processes in the Ediacaran Nanhua Basin. Geochimica Et<br>Cosmochimica Acta, 2019, 261, 191-209. | 1.6  | 52        |
| 72 | Global marine redox evolution from the late Neoproterozoic to the early Paleozoic constrained by the integration of Mo and U isotope records. Earth-Science Reviews, 2021, 214, 103506.                                         | 4.0  | 52        |

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Extensive marine anoxia associated with the Late Devonian Hangenberg Crisis. Earth and Planetary<br>Science Letters, 2020, 533, 115976.                                       | 1.8  | 49        |
| 74 | Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic–Jurassic transition. Nature Communications, 2022, 13, 299. | 5.8  | 49        |
| 75 | Increased productivity as a primary driver of marine anoxia in the Lower Cambrian. Palaeogeography,<br>Palaeoclimatology, Palaeoecology, 2018, 491, 1-9.                      | 1.0  | 48        |
| 76 | Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event. Nature Geoscience,<br>2020, 13, 302-306.                                                            | 5.4  | 47        |
| 77 | Sedimentary chromium isotopic compositions across the Cretaceous OAE2 at Demerara Rise Site 1258.<br>Chemical Geology, 2016, 429, 85-92.                                      | 1.4  | 44        |
| 78 | No evidence for high atmospheric oxygen levels 1,400 million years ago. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2550-1.  | 3.3  | 44        |
| 79 | UV radiation limited the expansion of cyanobacteria in early marine photic environments. Nature<br>Communications, 2018, 9, 3088.                                             | 5.8  | 44        |
| 80 | Highly heterogeneous "poikiloredox―conditions in the early Ediacaran Yangtze Sea. Precambrian<br>Research, 2018, 311, 157-166.                                                | 1.2  | 42        |
| 81 | Uranium Isotope Fractionation in Nonâ€sulfidic Anoxic Settings and the Global Uranium Isotope Mass<br>Balance. Global Biogeochemical Cycles, 2020, 34, e2020GB006649.         | 1.9  | 40        |
| 82 | Assessing bulk carbonates as archives for seawater Li isotope ratios. Chemical Geology, 2019, 530, 119338.                                                                    | 1.4  | 39        |
| 83 | The impact of marine nutrient abundance on early eukaryotic ecosystems. Geobiology, 2020, 18, 139-151.                                                                        | 1.1  | 39        |
| 84 | The role of environmental factors in the long-term evolution of the marine biological pump. Nature<br>Geoscience, 2020, 13, 812-816.                                          | 5.4  | 38        |
| 85 | A Study of the Microbial Spatial Heterogeneity of Bahamian Thrombolites Using Molecular,<br>Biochemical, and Stable Isotope Analyses. Astrobiology, 2017, 17, 413-430.        | 1.5  | 37        |
| 86 | Investigating controls on boron isotope ratios in shallow marine carbonates. Earth and Planetary<br>Science Letters, 2017, 458, 380-393.                                      | 1.8  | 37        |
| 87 | The effects of diagenesis on lithium isotope ratios of shallow marine carbonates. Numerische<br>Mathematik, 2020, 320, 150-184.                                               | 0.7  | 37        |
| 88 | Evolution of the structure and impact of Earth's biosphere. Nature Reviews Earth & Environment,<br>2021, 2, 123-139.                                                          | 12.2 | 37        |
| 89 | The elements of marine life. Nature Geoscience, 2014, 7, 855-856.                                                                                                             | 5.4  | 36        |
| 90 | Earth's youngest banded iron formation implies ferruginous conditions in the Early Cambrian ocean.<br>Scientific Reports, 2018, 8, 9970.                                      | 1.6  | 33        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A long-term record of early to mid-Paleozoic marine redox change. Science Advances, 2021, 7, .                                                                                                                            | 4.7 | 33        |
| 92  | Stromatolite branching in the Neoproterozoic of the Centralian Superbasin, Australia: an<br>investigation into sedimentary and microbial control of stromatolite morphology. Geobiology, 2007,<br>6, 070816220552001-???. | 1.1 | 32        |
| 93  | Carbonation and decarbonation reactions: Implications for planetary habitability. American<br>Mineralogist, 2019, 104, 1369-1380.                                                                                         | 0.9 | 30        |
| 94  | Zircon (Uâ€Th)/He Thermochronometric Constraints on Himalayan Thrust Belt Exhumation, Bedrock<br>Weathering, and Cenozoic Seawater Chemistry. Geochemistry, Geophysics, Geosystems, 2018, 19, 257-271.                    | 1.0 | 29        |
| 95  | Phytoplankton contributions to the trace-element composition of Precambrian banded iron formations. Bulletin of the Geological Society of America, 2018, 130, 941-951.                                                    | 1.6 | 28        |
| 96  | A paleosol record of the evolution of Cr redox cycling and evidence for an increase in atmospheric oxygen during the Neoproterozoic. Geobiology, 2019, 17, 579-593.                                                       | 1.1 | 27        |
| 97  | Making Sense of Massive Carbon Isotope Excursions With an Inverse Carbon Cycle Model. Journal of<br>Geophysical Research G: Biogeosciences, 2018, 123, 2485-2496.                                                         | 1.3 | 26        |
| 98  | Reconstructing Neoproterozoic seawater chemistry from early diagenetic dolomite. Geology, 2021, 49, 442-446.                                                                                                              | 2.0 | 26        |
| 99  | Authigenic origin for a massive negative carbon isotope excursion. Geology, 2019, 47, 115-118.                                                                                                                            | 2.0 | 25        |
| 100 | Lithium isotope composition of modern and fossilized Cenozoic brachiopods. Geology, 2020, 48, 1058-1061.                                                                                                                  | 2.0 | 25        |
| 101 | Weathering, alteration and reconstructing Earth's oxygenation. Interface Focus, 2020, 10, 20190140.                                                                                                                       | 1.5 | 25        |
| 102 | Marine anoxia linked to abrupt global warming during Earth's penultimate icehouse. Proceedings of the United States of America, 2022, 119, e2115231119.                                                                   | 3.3 | 24        |
| 103 | Subglacial meltwater supported aerobic marine habitats during Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25478-25483.                                    | 3.3 | 23        |
| 104 | The History of Ocean Oxygenation. Annual Review of Marine Science, 2022, 14, 331-353.                                                                                                                                     | 5.1 | 22        |
| 105 | A largely invariant marine dissolved organic carbon reservoir across Earth's history. Proceedings of the United States of America, 2021, 118, .                                                                           | 3.3 | 22        |
| 106 | Late Proterozoic Transitions in Climate, Oxygen, and Tectonics, and the Rise of Complex Life. The<br>Paleontological Society Papers, 2015, 21, 47-82.                                                                     | 0.8 | 20        |
| 107 | The role of calcium in regulating marine phosphorus burial and atmospheric oxygenation. Nature Communications, 2020, 11, 2232.                                                                                            | 5.8 | 20        |
| 108 | Evaluation of shallow-water carbonates as a seawater zinc isotope archive. Earth and Planetary Science Letters, 2021, 553, 116599.                                                                                        | 1.8 | 20        |

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Biogeochemical Controls on the Redox Evolution of Earth's Oceans and Atmosphere. Elements, 2020,<br>16, 191-196.                                                                                                      | 0.5  | 19        |
| 110 | The kaolinite shuttle links the Great Oxidation and Lomagundi events. Nature Communications, 2021, 12, 2944.                                                                                                          | 5.8  | 19        |
| 111 | Geochemistry of Paleoproterozoic Gunflint Formation carbonate: Implications for hydrosphere-atmosphere evolution. Precambrian Research, 2017, 290, 126-146.                                                           | 1.2  | 18        |
| 112 | Large Mass-Independent Oxygen Isotope Fractionations in Mid-Proterozoic Sediments: Evidence for a<br>Low-Oxygen Atmosphere?. Astrobiology, 2020, 20, 628-636.                                                         | 1.5  | 18        |
| 113 | Experimental evidence supports early silica cementation of the Ediacara Biota. Geology, 2021, 49, 51-55.                                                                                                              | 2.0  | 17        |
| 114 | Bioturbation feedbacks on the phosphorus cycle. Earth and Planetary Science Letters, 2021, 566, 116961.                                                                                                               | 1.8  | 16        |
| 115 | Strong evidence for a weakly oxygenated ocean–atmosphere system during the Proterozoic.<br>Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                              | 3.3  | 15        |
| 116 | Shallow water redox conditions of the mid-Proterozoic Muskwa Assemblage, British Columbia,<br>Canada. Numerische Mathematik, 2019, 319, 122-157.                                                                      | 0.7  | 14        |
| 117 | Revisiting groundwater carbon fluxes to the ocean with implications for the carbon cycle. Geology, 2020, 48, 67-71.                                                                                                   | 2.0  | 14        |
| 118 | Pliocene decoupling of equatorial Pacific temperature and pH gradients. Nature, 2021, 598, 457-461.                                                                                                                   | 13.7 | 14        |
| 119 | Perturbation of the deep-Earth carbon cycle in response to the Cambrian Explosion. Science Advances, 2022, 8, eabj1325.                                                                                               | 4.7  | 14        |
| 120 | Model based Paleozoic atmospheric oxygen estimates: a revisit to GEOCARBSULF. Numerische<br>Mathematik, 2018, 318, 557-589.                                                                                           | 0.7  | 12        |
| 121 | The isotopic composition of sedimentary organic zinc and implications for the global Zn isotope mass balance. Geochimica Et Cosmochimica Acta, 2021, 314, 16-26.                                                      | 1.6  | 12        |
| 122 | Uranium isotope evidence for extensive shallow water anoxia in the early Tonian oceans. Earth and<br>Planetary Science Letters, 2022, 583, 117437.                                                                    | 1.8  | 12        |
| 123 | From orogenies to oxygen. Nature Geoscience, 2018, 11, 9-10.                                                                                                                                                          | 5.4  | 10        |
| 124 | Triple oxygen isotope constraints on atmospheric O <sub>2</sub> and biological productivity during the mid-Proterozoic. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 3.3  | 9         |
| 125 | Marine siliceous ecosystem decline led to sustained anomalous Early Triassic warmth. Nature Communications, 2022, 13, .                                                                                               | 5.8  | 9         |
| 126 | Evolution: A Fixed-Nitrogen Fix in the Early Ocean?. Current Biology, 2014, 24, R276-R278.                                                                                                                            | 1.8  | 8         |

| #   | Article                                                                                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | <i>Diopatra cuprea</i> worm burrow parchment: a cautionary tale of infaunal surface reactivity.<br>Lethaia, 2020, 53, 47-61.                                                                                                                                                                                                                                  | 0.6  | 7         |
| 128 | Neoproterozoic synâ€glacial carbonate precipitation and implications for a snowball Earth.<br>Geobiology, 2022, 20, 175-193.                                                                                                                                                                                                                                  | 1.1  | 7         |
| 129 | Oxygen isotopic fingerprints on the phosphorus cycle within the deep subseafloor biosphere.<br>Geochimica Et Cosmochimica Acta, 2021, 310, 169-186.                                                                                                                                                                                                           | 1.6  | 5         |
| 130 | Store and share ancient rocks. Nature, 2020, 581, 137-139.                                                                                                                                                                                                                                                                                                    | 13.7 | 5         |
| 131 | Reconstructing seawater [180 and <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"&gt;<mml:msup><mml:mrow><mml:mi<br>mathvariant="normal"&gt;Î"</mml:mi<br></mml:mrow><mml:mrow><mml:mo>&gt;′</mml:mo><ml:mspace<br>width="0.2em" /&gt;<mml:mn>17</mml:mn></ml:mspace<br></mml:mrow></mml:msup></mml:math> O values with solid | 1.8  | 5         |
| 132 | Petrological evidence supports the death mask model for the preservation of Ediacaran soft-bodied organisms in South Australia: COMMENT. Geology, 2019, 47, e473-e473.                                                                                                                                                                                        | 2.0  | 4         |
| 133 | Reply to comment on "New age constraints for the Proterozoic Aravalli–Delhi successions of India<br>and their implications―by Melezhik et al. [Precambrian Res. (2014)]. Precambrian Research, 2014, 246,<br>371-372.                                                                                                                                         | 1.2  | 3         |
| 134 | Binding and transport of Cr(III) by clay minerals during the Great Oxidation Event. Earth and Planetary<br>Science Letters, 2022, 584, 117503.                                                                                                                                                                                                                | 1.8  | 3         |
| 135 | Global aerobics before Earth's oxygenation. Nature Ecology and Evolution, 2021, 5, 407-408.                                                                                                                                                                                                                                                                   | 3.4  | 2         |
| 136 | Holocene Spatiotemporal Redox Variations in the Southern Baltic Sea. Frontiers in Earth Science, 2021, 9, .                                                                                                                                                                                                                                                   | 0.8  | 2         |
| 137 | Pointâ€counterpoint articles in geobiology. Geobiology, 2020, 18, 259-259.                                                                                                                                                                                                                                                                                    | 1.1  | 1         |
| 138 | The Long Road to Animal Life: Two Billion Years of Evolving Oxygen in the Atmosphere and Ocean and Escaping the †Boring Billion'. The Paleontological Society Special Publications, 2014, 13, 48-49.                                                                                                                                                          | 0.0  | 0         |
| 139 | The influence of invertebrate faecal material on compositional heterogeneity, diagenesis and trace<br>metal distribution in the Ogeechee River estuary, Georgia, USA. Sedimentology, 2021, 68, 788-804.                                                                                                                                                       | 1.6  | 0         |