
Naoto Ishikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4066701/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. Journal of the American Chemical Society, 2003, 125, 8694-8695.	13.7	2,257
2	Q-Chem 2.0: a high-performanceab initio electronic structure program package. Journal of Computational Chemistry, 2000, 21, 1532-1548.	3.3	617
3	Quantum Tunneling of Magnetization in Lanthanide Single-Molecule Magnets: Bis(phthalocyaninato)terbium and Bis(phthalocyaninato)dysprosium Anions. Angewandte Chemie - International Edition, 2005, 44, 2931-2935.	13.8	581
4	Nuclear Spin Driven Quantum Tunneling of Magnetization in a New Lanthanide Single-Molecule Magnet:Â Bis(Phthalocyaninato)holmium Anion. Journal of the American Chemical Society, 2005, 127, 3650-3651.	13.7	479
5	Mononuclear Lanthanide Complexes with a Long Magnetization Relaxation Time at High Temperatures: A New Category of Magnets at the Single-Molecular Level. Journal of Physical Chemistry B, 2004, 108, 11265-11271.	2.6	443
6	Determination of Ligand-Field Parameters and f-Electronic Structures of Double-Decker Bis(phthalocyaninato)lanthanide Complexes. Inorganic Chemistry, 2003, 42, 2440-2446.	4.0	320
7	Upward Temperature Shift of the Intrinsic Phase Lag of the Magnetization of Bis(phthalocyaninato)terbium by Ligand Oxidation Creating anS=1/2Spin. Inorganic Chemistry, 2004, 43, 5498-5500.	4.0	237
8	Interaction between f-Electronic Systems in Dinuclear Lanthanide Complexes with Phthalocyanines. Journal of the American Chemical Society, 2002, 124, 11440-11447.	13.7	202
9	The Effect of the f-f Interaction on the Dynamic Magnetism of a Coupled 4f8 System in a Dinuclear Terbium Complex with Phthalocyanines. Angewandte Chemie - International Edition, 2005, 44, 731-733.	13.8	153
10	Effects of Chemically Induced Contraction of a Coordination Polyhedron on the Dynamical Magnetism of Bis(phthalocyaninato)disprosium, a Single-4f-Ionic Single-Molecule Magnet with a Kramers Ground State. Inorganic Chemistry, 2008, 47, 10217-10219.	4.0	149
11	Determination of Ligand-Field Parameters and f-Electronic Structures of Hetero-Dinuclear Phthalocyanine Complexes with a Diamagnetic Yttrium(III) and a Paramagnetic Trivalent Lanthanide Ion. Journal of Physical Chemistry A, 2002, 106, 9543-9550.	2.5	132
12	Localized orbital study on the electronic structure of phthalocyanine dimers. The Journal of Physical Chemistry, 1992, 96, 8832-8839.	2.9	106
13	Simultaneous Determination of Ligand-Field Parameters of Isostructural Lanthanide Complexes by Multidimensional Optimization. Journal of Physical Chemistry A, 2003, 107, 5831-5835.	2.5	77
14	Hole delocalization in naphthalocyaninatophthalocyaninatolutetium (III). Chemical Physics Letters, 1991, 180, 51-56.	2.6	70
15	Proton-induced switching of the single molecule magnetic properties of a porphyrin based TbIII double-decker complex. Chemical Communications, 2012, 48, 7796.	4.1	70
16	Electronic structures and spectral properties of double- and triple-decker phthalocyanine complexes in a localized molecular orbital view. Journal of Porphyrins and Phthalocyanines, 2001, 05, 87-101.	0.8	62
17	Study of1H NMR Spectra of Dinuclear Complexes of Heavy Lanthanides with Phthalocyanines Based on Separation of the Effects of Two Paramagnetic Centers. Journal of Physical Chemistry A, 2003, 107, 7879-7884.	2.5	60
18	Excited States of the Lutetium Phthalocyanine Trimer:Â Semiempirical Molecular Orbital and Localized Orbital Study. The Journal of Physical Chemistry, 1996, 100, 8722-8730.	2.9	38

NAOTO ISHIKAWA

#	Article	IF	CITATIONS
19	Magnetic Relaxations Arising from Spin–Phonon Interactions in the Nonthermally Activated Temperature Range for a Double-Decker Terbium Phthalocyanine Single Molecule Magnet. Inorganic Chemistry, 2014, 53, 9080-9086.	4.0	37
20	Ligand-Field Energy Splitting in Lanthanide-Based Single-Molecule Magnets by NMR Spectroscopy. Inorganic Chemistry, 2017, 56, 15285-15294.	4.0	31
21	Switching of Singleâ€Molecule Magnetic Properties of Tb ^{III} –Porphyrin Doubleâ€Decker Complexes and Observation of Their Supramolecular Structures on a Carbon Surface. Chemistry - A European Journal, 2014, 20, 11362-11369.	3.3	28
22	Axially Polarized NIR Absorption Bands in Electron-deficient Lanthanide Phthalocyanine Dimers and Trimers. Journal of Porphyrins and Phthalocyanines, 1999, 03, 514-521.	0.8	27
23	Coupling between the photo-excited cyclic π system and the 4f electronic system in a lanthanide single molecule magnet. Chemical Communications, 2017, 53, 6168-6171.	4.1	20
24	Facile one-pot preparation of thermally and photochemically convertible soluble precursors of copper phthalocyanine and naphthalocyanine. Chemical Communications, 2011, 47, 8518.	4.1	18
25	Effect of Chain Length on Thermal Conversion of Alkoxy-Substituted Copper Phthalocyanine Precursors. Inorganic Chemistry, 2011, 50, 11832-11837.	4.0	15
26	Effect of Protonation on the Single-molecule-magnet Behavior of a Mixed (Phthalocyaninato)(porphyrinato)terbium Double-decker Complex. Chemistry Letters, 2015, 44, 668-670.	1.3	15
27	Synthesis of a Series of Heavy Lanthanide(III) Monoporphyrinato Complexes with Tetragonal Symmetry. Inorganic Chemistry, 2017, 56, 10625-10632.	4.0	15
28	Thermally Accessible Triplet State in a Phthalocyanine Assembly System Which is Formed from Crown-Ether-Substituted Lutetium Phthalocyanine Dimer Radicals in the Presence of Potassium Ion. Molecular Crystals and Liquid Crystals, 1996, 286, 263-268.	0.3	14
29	Synthesis of a Neutral Mononuclear Four-Coordinate Co(II) Complex Having Two Halved Phthalocyanine Ligands That Shows Slow Magnetic Relaxations under Zero Static Magnetic Field. Inorganic Chemistry, 2019, 58, 5211-5220.	4.0	14
30	Determination of ligand field splitting in lanthanide(<scp>iii</scp>) monoporphyrinato complexes. Dalton Transactions, 2019, 48, 7685-7692.	3.3	13
31	Synthesis of a Series of Monophthalocyaninato Cyclen Heavy Lanthanide(III) Complexes with Tetragonal Symmetry. Inorganic Chemistry, 2018, 57, 668-675.	4.0	12
32	<i>In-situ</i> observation of γ→α transformation of Fe particles in a Cu-Fe alloy. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1991, 64, 387-394.	0.6	11
33	Solvent-dependent morphology of thermally converted copper phthalocyanine for solution-processed small molecule organic photovoltaic devices. Organic Electronics, 2014, 15, 139-143.	2.6	10
34	Selective Stabilization of the Spin States of a Magnetically Anisotropic Dysprosium Ion Induced by Photoâ€Excitation of the Associated Cyclic Ï€â€Conjugated System. Chemistry - A European Journal, 2017, 23, 16357-16363.	3.3	10
35	Intramolecular Magnetic Interaction in a Photogenerated Dual Angular Momentum System in a Terbium–Phthalocyaninato 1:1 Complex. Inorganic Chemistry, 2021, 60, 2037-2044.	4.0	10
36	First example of a hexadentate bicyclic phthalocyanine analogue containing a divalent metal center. Dalton Transactions, 2013, 42, 16486.	3.3	8

NAOTO ISHIKAWA

#	Article	IF	CITATIONS
37	Spectroscopic Investigation of Interaction between the 4f Electronic System and the Photoexcited Cyclic ï€ System in Terbium(III) Monoporphyrinato Complex. Inorganic Chemistry, 2020, 59, 14326-14336.	4.0	8
38	Antiparallel Coupling between a 4f System and a Photoexcited Cyclic ï€ System in a Dysprosium(III) Monoporphyrinato Complex. Inorganic Chemistry, 2021, 60, 14418-14425.	4.0	7
39	Formation and Crystal Structure of a Novel Zinc Phthalocyanine Analogue Having an Axial Isoindole Ligand Obtained by Lithium-mediated Reactions under Mild Conditions. Chemistry Letters, 2014, 43, 925-927.	1.3	6
40	System Composed of Three Types of Electronic Angular Momenta: A J – S – L Triad in a Photoexcited π-Radical Bis(phthalocyaninato)terbium Single-Molecule Magnet. Inorganic Chemistry, 2018, 57, 15438-15444.	4.0	6
41	Surface Self-Assembly of <i>Trans</i> -Substituted Porphyrin Double-Decker Complexes Exhibiting Slow Magnetic Relaxation. E-Journal of Surface Science and Nanotechnology, 2014, 12, 124-128.	0.4	6
42	Effect of an internal stress on formation of stacking fault tetrahedra in an electron-irradiated Cu-Fe alloy. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1990, 61, 929-941.	0.6	5
43	Facile, liquid phase preparation of copper phthalocyanine microcrystals by means of thermal conversion of the dimethoxy-substituted solvent soluble phthalocyanine precursors. Dyes and Pigments, 2014, 109, 151-154.	3.7	5
44	Observation of magnetic interactions between localized 4f- and itinerant ï€-electrons in a single crystal of cationic bisphthalocyanine complexes containing diluted spin centres. Dalton Transactions, 2017, 46, 12421-12424.	3.3	5
45	Magnetic interaction of photoexcited terbium–porphyrin complexes with non-aromatic ligands having different symmetries. Dalton Transactions, 2022, 51, 6186-6196.	3.3	3
46	Janus Pyrrolopyrrole Azaâ€dipyrrin: Hydrogenâ€Bonded Assemblies and Slow Magnetic Relaxation of the Cobalt(II) Complex in the Solid State. Chemistry - A European Journal, 2021, 27, 12686-12692.	3.3	2
47	Q-Chem 2.0: a high-performance ab initio electronic structure program package. , 2000, 21, 1532.		2
48	Formation of stacking fault tetrahedra around α-Fe particles in a Cu–Fe alloy. Philosophical Magazine Letters, 1989, 60, 255-259.	1.2	1