Hui Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4066622/publications.pdf Version: 2024-02-01

HIII XIE

#	Article	IF	CITATIONS
1	Superconducting praseodymium superhydrides. Science Advances, 2020, 6, eaax6849.	10.3	99
2	Hydrogen Pentagraphenelike Structure Stabilized by Hafnium: A High-Temperature Conventional Superconductor. Physical Review Letters, 2020, 125, 217001.	7.8	87
3	Polyhydride CeH9 with an atomic-like hydrogen clathrate structure. Nature Communications, 2019, 10, 3461.	12.8	81
4	High-Pressure Synthesis of Magnetic Neodymium Polyhydrides. Journal of the American Chemical Society, 2020, 142, 2803-2811.	13.7	59
5	Prediction of superconducting ternary hydride MgGeH ₆ : from divergent high-pressure formation routes. Physical Chemistry Chemical Physics, 2017, 19, 27406-27412.	2.8	40
6	Ternary superconducting cophosphorus hydrides stabilized via lithium. Npj Computational Materials, 2019, 5, .	8.7	38
7	Unique Phase Diagram and Superconductivity of Calcium Hydrides at High Pressures. Inorganic Chemistry, 2019, 58, 2558-2564.	4.0	33
8	High-temperature superconductivity in ternary clathrate YCaH ₁₂ under high pressures. Journal of Physics Condensed Matter, 2019, 31, 245404.	1.8	31
9	Ab Initio Approach and Its Impact on Superconductivity. Journal of Superconductivity and Novel Magnetism, 2019, 32, 53-60.	1.8	29
10	Superconducting Zirconium Polyhydrides at Moderate Pressures. Journal of Physical Chemistry Letters, 2020, 11, 646-651.	4.6	26
11	High-Pressure Formation of Cobalt Polyhydrides: A First-Principle Study. Inorganic Chemistry, 2018, 57, 181-186.	4.0	22
12	Unexpected calcium polyhydride CaH4: A possible route to dissociation of hydrogen molecules. Journal of Chemical Physics, 2019, 150, 044507.	3.0	17
13	Multistep Dissociation of Fluorine Molecules under Extreme Compression. Physical Review Letters, 2021, 126, 225704.	7.8	10
14	Ab initio studies of copper hydrides under high pressure. Frontiers of Physics, 2019, 14, 1.	5.0	9
15	First-principles study of ternary Li-Al-Te compounds under high pressure. Solid State Communications, 2018, 270, 58-64.	1.9	6
16	Structural and electrical properties of Ga–Te systems under high pressure. Chinese Physics B, 2019, 28, 056104.	1.4	6
17	First principle studies of ZnO1-xSx alloys under high pressure. Journal of Alloys and Compounds, 2019, 788, 905-911.	5.5	6
18	Structure and superconductivity of protactinium hydrides under high pressure. Journal of Physics Condensed Matter, 2019, 31, 315403.	1.8	6

Ηυι Χιε

#	Article	IF	CITATIONS
19	New Cage-Like Cerium Trihydride Stabilized at Ambient Conditions. CCS Chemistry, 0, , 1012-1018.	7.8	4
20	Structural, Electronic, and Optical Properties of ZnO _{1 – <i>x</i>} Te _{<i>x</i>} Alloys. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900155.	2.4	3
21	Structural diversity and hydrogen storage properties in the system K–Si–H. Physical Chemistry Chemical Physics, 2022, 24, 13033-13039.	2.8	3
22	High Tc superconductivity in layered hydrides XH15 (X = Ca, Sr, Y, La) under high pressures. Frontiers of Physics, 2022, 17, .	5.0	3
23	Synthesis of superconducting SbS and SbS2 antimony chalcogenide compounds at high pressures. Physical Review B, 2021, 103, .	3.2	2
24	Stable structures and superconductivity of an At–H system at high pressure. Physical Chemistry Chemical Physics, 2018, 20, 24783-24789.	2.8	1
25	Variational and diffusion Monte Carlo simulations of a hydrogen molecular ion in a spherical box*. Chinese Physics B, 2019, 28, 056401.	1.4	1
26	High pressure structural stability of the Na-Te system. AIP Advances, 2018, 8, 035123.	1.3	0