
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4065621/publications.pdf Version: 2024-02-01

CAHID LO'KANE

#	Article	IF	CITATIONS
1	Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genetics, 2004, 36, 585-595.	21.4	2,188
2	Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron, 1995, 14, 341-351.	8.1	810
3	Detection in situ of genomic regulatory elements in Drosophila Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 9123-9127.	7.1	774
4	Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nature Chemical Biology, 2008, 4, 295-305.	8.0	739
5	Lysosomal positioning coordinates cellular nutrient responses. Nature Cell Biology, 2011, 13, 453-460.	10.3	726
6	P-element-mediated enhancer detection: a versatile method to study development in Drosophila Genes and Development, 1989, 3, 1288-1300.	5.9	689
7	α-Synuclein impairs macroautophagy: implications for Parkinson's disease. Journal of Cell Biology, 2010, 190, 1023-1037.	5.2	687
8	Rapamycin alleviates toxicity of different aggregate-prone proteins. Human Molecular Genetics, 2006, 15, 433-442.	2.9	618
9	Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nature Chemical Biology, 2007, 3, 331-338.	8.0	572
10	Associative Learning Disrupted by Impaired G _s Signaling in <i>Drosophila</i> Mushroom Bodies. Science, 1996, 274, 2104-2107.	12.6	472
11	P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila Genes and Development, 1989, 3, 1301-1313.	5.9	412
12	Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nature Genetics, 2005, 37, 771-776.	21.4	405
13	Rapamycin pre-treatment protects against apoptosis. Human Molecular Genetics, 2006, 15, 1209-1216.	2.9	376
14	Syntaxin and synaptobrevin function downstream of vesicle docking in drosophila. Neuron, 1995, 15, 663-673.	8.1	353
15	The DrosDel Collection. Genetics, 2004, 167, 797-813.	2.9	342
16	Complex Inhibitory Effects of Nitric Oxide on Autophagy. Molecular Cell, 2011, 43, 19-32.	9.7	340
17	A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Human Molecular Genetics, 2008, 17, 170-178.	2.9	312
18	Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. Journal of Cell Science, 2008, 121, 1649-1660.	2.0	284

#	Article	IF	CITATIONS
19	Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nature Reviews Neuroscience, 2011, 12, 31-42.	10.2	257
20	PICALM modulates autophagy activity and tau accumulation. Nature Communications, 2014, 5, 4998.	12.8	218
21	The Partner of Inscuteable/Discs-Large Complex Is Required to Establish Planar Polarity during Asymmetric Cell Division in Drosophila. Cell, 2001, 106, 355-366.	28.9	216
22	Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes and Development, 2001, 15, 2967-2979.	5.9	214
23	Genetic Feminization of Pheromones and Its Behavioral Consequences in Drosophila Males. Science, 1997, 276, 1555-1558.	12.6	207
24	Drosophila spichthyin inhibits BMP signaling and regulates synaptic growth and axonal microtubules. Nature Neuroscience, 2007, 10, 177-185.	14.8	168
25	Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca2+ channel–vesicle coupling. Nature Neuroscience, 2016, 19, 1311-1320.	14.8	166
26	Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system. Journal of Neuroscience, 1996, 16, 1101-1113.	3.6	146
27	Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease. Human Molecular Genetics, 2010, 19, 3413-3429.	2.9	135
28	Rapsynoid/Partner of Inscuteable Controls Asymmetric Division of Larval Neuroblasts in <i>Drosophila</i> . Journal of Neuroscience, 2000, 20, RC84-RC84.	3.6	132
29	The hereditary spastic paraplegia proteins NIPA1, spastin and spartin are inhibitors of mammalian BMP signalling. Human Molecular Genetics, 2009, 18, 3805-3821.	2.9	132
30	Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. Journal of Cell Biology, 2007, 178, 309-322.	5.2	117
31	Multiple Spectral Inputs Improve Motion Discrimination in the <i>Drosophila</i> Visual System. Science, 2012, 336, 925-931.	12.6	107
32	CCT complex restricts neuropathogenic protein aggregation via autophagy. Nature Communications, 2016, 7, 13821.	12.8	107
33	Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity. Cell Death and Differentiation, 2015, 22, 433-444.	11.2	93
34	siRNA screen identifies QPCT as a druggable target for Huntington's disease. Nature Chemical Biology, 2015, 11, 347-354.	8.0	87
35	<i>Drosophila</i> Vps35 function is necessary for normal endocytic trafficking and actin cytoskeleton organisation. Journal of Cell Science, 2007, 120, 4367-4376.	2.0	86
36	Members of the synaptobrevin/vesicle-associated membrane protein (VAMP) family in Drosophila are functionally interchangeable in vivo for neurotransmitter release and cell viability. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13867-13872.	7.1	83

#	Article	IF	CITATIONS
37	Stereotypic and random patterns of connectivity in the larval mushroom body calyx of Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19027-19032.	7.1	83
38	Axonal Endoplasmic Reticulum Dynamics and Its Roles in Neurodegeneration. Frontiers in Neuroscience, 2020, 14, 48.	2.8	79
39	Reticulon-like-1, the Drosophila orthologue of the Hereditary Spastic Paraplegia gene reticulon 2, is required for organization of endoplasmic reticulum and of distal motor axons. Human Molecular Genetics, 2012, 21, 3356-3365.	2.9	71
40	Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins. ELife, 2017, 6, .	6.0	71
41	Lithium rescues toxicity of aggregate-prone proteins in Drosophila by perturbing Wnt pathway. Human Molecular Genetics, 2005, 14, 3003-3011.	2.9	70
42	Rhabdomere biogenesis in <i>Drosophila</i> photoreceptors is acutely sensitive to phosphatidic acid levels. Journal of Cell Biology, 2009, 185, 129-145.	5.2	67
43	Localized olfactory representation in mushroom bodies of <i>Drosophila</i> larvae. Proceedings of the United States of America, 2009, 106, 10314-10319.	7.1	62
44	Puromycin-sensitive aminopeptidase protects against aggregation-prone proteins via autophagy. Human Molecular Genetics, 2010, 19, 4573-4586.	2.9	62
45	Dyneins, Autophagy, Aggregation and Neurodegeneration. Autophagy, 2005, 1, 177-178.	9.1	58
46	Modelling human diseases in Drosophila and Caenorhabditis. Seminars in Cell and Developmental Biology, 2003, 14, 3-10.	5.0	56
47	Comparative evolutionary analysis of VPS33 homologues: genetic and functional insights. Human Molecular Genetics, 2005, 14, 1261-1270.	2.9	56
48	Targeted expression of tetanus neurotoxin interferes with behavioral responses to sensory input inDrosophila. Journal of Neurobiology, 2002, 50, 221-233.	3.6	48
49	Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: I Dynamics. PLoS ONE, 2009, 4, e4307.	2.5	46
50	Integrable alpha-amylase plasmid for generating random transcriptional fusions in Bacillus subtilis. Journal of Bacteriology, 1986, 168, 973-981.	2.2	43
51	Drosophila as a Model Organism for the Study of Neuropsychiatric Disorders. Current Topics in Behavioral Neurosciences, 2011, 7, 37-60.	1.7	43
52	Shaw potassium channel genes inDrosophila. Journal of Neurobiology, 2005, 63, 235-254.	3.6	41
53	A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila. Frontiers in Neural Circuits, 2014, 8, 35.	2.8	40
54	<i>GAL4</i> Drivers Specific for Type Ib and Type Is Motor Neurons in <i>Drosophila</i> . G3: Genes, Genomes, Genetics, 2019, 9, 453-462.	1.8	38

#	Article	IF	CITATIONS
55	The Drosophila <i>embargoed</i> Gene Is Required for Larval Progression and Encodes the Functional Homolog of Schizosaccharomyces Crm1. Genetics, 2000, 155, 1799-1807.	2.9	34
56	Activation of protein kinase A-independent pathways by Gs in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14542-14547.	7.1	31
57	Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: II Mechanisms. PLoS ONE, 2009, 4, e4306.	2.5	31
58	Cullin-3 regulates pattern formation, external sensory organ development and cell survival during Drosophila development. Mechanisms of Development, 2004, 121, 1495-1507.	1.7	30
59	Deleterious and protective properties of an aggregate-prone protein with a polyalanine expansion. Human Molecular Genetics, 2006, 15, 453-465.	2.9	30
60	Inducible ternary control of transgene expression and cell ablation in Drosophila. Development Genes and Evolution, 1996, 206, 14-24.	0.9	29
61	Dribble, the <i>Drosophila</i> KRR1p Homologue, Is Involved in rRNA Processing. Molecular Biology of the Cell, 2001, 12, 1409-1419.	2.1	23
62	Drosophila paramyosin is important for myoblast fusion and essential for myofibril formation. Journal of Cell Biology, 2003, 160, 899-908.	5.2	23
63	NeuroGeM, a knowledgebase of genetic modifiers in neurodegenerative diseases. BMC Medical Genomics, 2013, 6, 52.	1.5	20
64	A Phagocytic Route for Uptake of Double-Stranded RNA in RNAi. PLoS ONE, 2011, 6, e19087.	2.5	20
65	Selective cell ablation and genetic surgery. Current Opinion in Genetics and Development, 1992, 2, 602-607.	3.3	16
66	Automated measurement of Drosophila jump reflex habituation and its use for mutant screening. Journal of Neuroscience Methods, 2009, 182, 43-48.	2.5	15
67	Targeting expression to projection neurons that innervate specific mushroom body calyx and antennal lobe glomeruli in larval Drosophila. Gene Expression Patterns, 2010, 10, 328-337.	0.8	15
68	ISOGENIC AUTOSOMES TO BE APPLIED IN OPTIMAL SCREENING FOR NOVEL MUTANTS WITH VIABLE PHENOTYPES INDROSOPHILA MELANOGASTER. Journal of Neurogenetics, 2005, 19, 57-85.	1.4	14
69	The Fascination of the Drosophila NMJ. Trends in Genetics, 1997, 13, 85-87.	6.7	13
70	Identification and characterization of the gene for Drosophila L3 ribosomal protein. Gene, 1998, 212, 119-125.	2.2	13
71	Characterisation of the gene for Drosophila amphiphysin. Gene, 2000, 241, 167-174.	2.2	13
72	Endoplasmic Reticulum Lumenal Indicators in Drosophila Reveal Effects of HSP-Related Mutations on Endoplasmic Reticulum Calcium Dynamics. Frontiers in Neuroscience, 2020, 14, 816.	2.8	13

#	Article	IF	CITATIONS
73	Cell ablation using wild-type and cold-sensitive ricin-a chain indrosophila embryonic mesoderm. Genesis, 2002, 34, 132-134.	1.6	12
74	Characterization of the Drosophila Atlastin Interactome Reveals VCP as a Functionally Related Interactor. Journal of Genetics and Genomics, 2013, 40, 297-306.	3.9	11
75	The nuclear protein Waharan is required for endosomal-lysosomal trafficking in <i>Drosophila</i> . Journal of Cell Science, 2010, 123, 2369-2374.	2.0	10
76	Virtual Fly Brain - Using OWL to support the mapping and genetic dissection of the brain. CEUR Workshop Proceedings, 2014, 1265, 85-96.	2.3	10
77	Identification and characterization of the gene for Drosophila S20 ribosomal protein. Gene, 1997, 200, 85-89.	2.2	9
78	Sexual behaviour: Courting dissatisfaction. Current Biology, 1999, 9, R289-R292.	3.9	9
79	Octopaminergic neurons have multiple targets in <i>Drosophila</i> larval mushroom body calyx and can modulate behavioral odor discrimination. Learning and Memory, 2021, 28, 53-71.	1.3	8
80	Use of a cytoplasmically localised P-lacZ fusion to identify cell shapes by enhancer trapping inDrosophila. Roux's Archives of Developmental Biology, 1991, 200, 306-311.	1.2	6
81	Identification and characterization of kraken, a gene encoding a putative hydrolytic enzyme in Drosophila melanogaster. Gene, 1998, 222, 195-201.	2.2	3
82	Editorial: Hereditary Spastic Paraplegias: At the Crossroads of Molecular Pathways and Clinical Options. Frontiers in Neuroscience, 2021, 15, 708642.	2.8	3
83	Drosophila melanogaster. Yeast, 2000, 1, 146-153.	1.7	2
84	A multicomponent screen for feeding behaviour and nutritional status in Drosophila to interrogate mammalian appetite-related genes. Molecular Metabolism, 2021, 43, 101127.	6.5	2
85	Rev-GFP transgenic lines for studies of nucleocytoplasmic transport indrosophila. Genesis, 2002, 34, 139-141.	1.6	1
86	α-Synuclein impairs macroautophagy: implications for Parkinson's disease. Journal of Experimental Medicine, 2010, 207, i29-i29.	8.5	1
87	Connectivity in the larval mushroom body calyx, a secondary olfactory center of Drosophila. Neuroscience Research, 2007, 58, S218.	1.9	0
88	Localized olfactory input in the mushroom bodies of Drosophila larvae. Neuroscience Research, 2009, 65, S71-S72.	1.9	0
89	Drosophila melanogaster. Yeast, 2000, 1, 146-153.	1.7	0