
Katsuhiko Mikoshiba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4065393/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	GIT1 protects against breast cancer growth through negative regulation of Notch. Nature Communications, 2022, 13, 1537.	12.8	5
2	ERAD components Derlin-1 and Derlin-2 are essential for postnatal brain development and motor function. IScience, 2021, 24, 102758.	4.1	11
3	Ten-eleven translocation 1 mediated-DNA hydroxymethylation is required for myelination and remyelination in the mouse brain. Nature Communications, 2021, 12, 5091.	12.8	22
4	IP ₃ Receptor Plasticity Underlying Diverse Functions. Annual Review of Physiology, 2020, 82, 151-176.	13.1	31
5	The molecular mechanism of synaptic activityâ€induced astrocytic volume transient. Journal of Physiology, 2020, 598, 4555-4572.	2.9	10
6	Inhibitory synaptic transmission tuned by Ca 2+ and glutamate through the control of GABA A R lateral diffusion dynamics. Development Growth and Differentiation, 2020, 62, 398-406.	1.5	3
7	Synaptic Function and Neuropathological Disease Revealed by Quantum Dot-Single-Particle Tracking. Neuromethods, 2020, , 131-155.	0.3	2
8	Histamine H1 receptor on astrocytes and neurons controls distinct aspects of mouse behaviour. Scientific Reports, 2019, 9, 16451.	3.3	31
9	Bcl-2 and IP3 compete for the ligand-binding domain of IP3Rs modulating Ca2+ signaling output. Cellular and Molecular Life Sciences, 2019, 76, 3843-3859.	5.4	31
10	Remodeling of Ca2+ signaling in cancer: Regulation of inositol 1,4,5-trisphosphate receptors through oncogenes and tumor suppressors. Advances in Biological Regulation, 2018, 68, 64-76.	2.3	43
11	Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death and Differentiation, 2018, 25, 1885-1904.	11.2	31
12	Splicing variation of Long-IRBIT determines the target selectivity of IRBIT family proteins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3921-3926.	7.1	12
13	RNG105/caprin1, an RNA granule protein for dendritic mRNA localization, is essential for long-term memory formation. ELife, 2017, 6, .	6.0	45
14	Dissection of local Ca2+ signals inside cytosol by ER-targeted Ca2+ indicator. Biochemical and Biophysical Research Communications, 2016, 479, 67-73.	2.1	12
15	IRBIT controls apoptosis by interacting with the Bcl-2 homolog, Bcl2l10, and by promoting ER-mitochondria contact. ELife, 2016, 5, .	6.0	56
16	Bidirectional Control of Synaptic GABAAR Clustering by Glutamate and Calcium. Cell Reports, 2015, 13, 2768-2780.	6.4	88
17	IRBIT regulates CaMKIIα activity and contributes to catecholamine homeostasis through tyrosine hydroxylase phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5515-5520.	7.1	35
18	IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues. PLoS ONE, 2015, 10, e0141569.	2.5	11

ΚΑΤΣUHIKO ΜΙΚΟSHIBA

#	Article	IF	CITATIONS
19	IRBIT: A regulator of ion channels and ion transporters. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2195-2204.	4.1	45
20	Irbit Mediates Synergy Between Ca2+ and cAMP Signaling Pathways During Epithelial Transport in Mice. Gastroenterology, 2013, 145, 232-241.	1.3	81
21	Gephyrin-Independent GABAAR Mobility and Clustering during Plasticity. PLoS ONE, 2012, 7, e36148.	2.5	47
22	Inositol 1,4,5-Triphosphate Receptor-binding Protein Released with Inositol 1,4,5-Triphosphate (IRBIT) Associates with Components of the mRNA 3′ Processing Machinery in a Phosphorylation-dependent Manner and Inhibits Polyadenylation. Journal of Biological Chemistry, 2009, 284, 10694-10705.	3.4	29
23	80K-H Interacts with Inositol 1,4,5-Trisphosphate (IP3) Receptors and Regulates IP3-induced Calcium Release Activity. Journal of Biological Chemistry, 2009, 284, 372-380.	3.4	68
24	G-protein-coupled Receptor Kinase-interacting Proteins Inhibit Apoptosis by Inositol 1,4,5-Triphosphate Receptor-mediated Ca2+ Signal Regulation. Journal of Biological Chemistry, 2009, 284, 29158-29169.	3.4	34
25	An IRBIT homologue lacks binding activity to inositol 1,4,5â€ŧrisphosphate receptor due to the unique Nâ€ŧerminal appendage. Journal of Neurochemistry, 2009, 109, 539-550.	3.9	20
26	Activity-Dependent Tuning of Inhibitory Neurotransmission Based on GABAAR Diffusion Dynamics. Neuron, 2009, 62, 670-682.	8.1	252
27	IRBIT coordinates epithelial fluid and HCO3–secretion by stimulating the transporters pNBC1 and CFTR in the murine pancreatic duct. Journal of Clinical Investigation, 2009, 119, 193-202.	8.2	113
28	Inositol 1,4,5-trisphosphate receptors are autoantibody target antigens in patients with Sjögren's syndrome and other systemic rheumatic diseases. Modern Rheumatology, 2007, 17, 137-143.	1.8	11
29	IP ₃ receptor/Ca ²⁺ channel: from discovery to new signaling concepts. Journal of Neurochemistry, 2007, 102, 1426-1446.	3.9	354
30	The IP3 receptor/Ca2+ channel and its cellular function. Biochemical Society Symposia, 2007, 74, 9.	2.7	63
31	IRBIT Suppresses IP3 Receptor Activity by Competing with IP3 for the Common Binding Site on the IP3 Receptor. Molecular Cell, 2006, 22, 795-806.	9.7	153
32	Inositol 1,4,5-trisphosphate (IP3) receptors and their role in neuronal cell function. Journal of Neurochemistry, 2006, 97, 1627-1633.	3.9	39
33	Distinct Role of the N-terminal Tail of the Na,K-ATPase Catalytic Subunit as a Signal Transducer. Journal of Biological Chemistry, 2006, 281, 21954-21962.	3.4	109
34	IRBIT, an inositol 1,4,5-trisphosphate receptor-binding protein, specifically binds to and activates pancreas-type Na+/HCO3- cotransporter 1 (pNBC1). Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9542-9547.	7.1	150
35	IP3 Receptor Types 2 and 3 Mediate Exocrine Secretion Underlying Energy Metabolism. Science, 2005, 309, 2232-2234.	12.6	285
36	Kinesin dependent, rapid, bi-directional transport of ER sub-compartment in dendrites of hippocampal neurons. Journal of Cell Science, 2004, 117, 163-175.	2.0	92

#	Article	IF	CITATIONS
37	IRBIT, a Novel Inositol 1,4,5-Trisphosphate (IP3) Receptor-binding Protein, Is Released from the IP3 Receptor upon IP3 Binding to the Receptor. Journal of Biological Chemistry, 2003, 278, 10602-10612.	3.4	176
38	Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature, 2002, 420, 696-700.	27.8	309
39	Demonstration of an E-box and Its CNS-Related Binding Factors for Transcriptional Regulation of the Mouse Type 1 Inositol 1,4,5-Trisphosphate Receptor Gene. Journal of Neurochemistry, 2002, 69, 476-484.	3.9	16
40	Tac2-N, an atypical C-type tandem C2 protein localized in the nucleus 1. FEBS Letters, 2001, 503, 217-218.	2.8	22
41	Characterization of KIAA1427 protein as an atypical synaptotagmin (Syt XIII). Biochemical Journal, 2001, 354, 249-257.	3.7	47
42	Xenopus Polycomblike 2 (XPcl2) controls anterior to posterior patterning of the neural tissue. Development Genes and Evolution, 2001, 211, 309-314.	0.9	16
43	Synaptotagmin IV Is Present at the Golgi and Distal Parts of Neurites. Journal of Neurochemistry, 2001, 74, 518-526.	3.9	67
44	A unique spacer domain of synaptotagmin IV is essential for Golgi localization. Journal of Neurochemistry, 2001, 77, 730-740.	3.9	32
45	Developmental Neurotoxicity of Phenytoin on Granule Cells and Purkinje Cells in Mouse Cerebellum. Journal of Neurochemistry, 2001, 72, 1497-1506.	3.9	41
46	Transcriptional Regulation of Mouse Type 1 Inositol 1,4,5-Trisphosphate Receptor Gene by NeuroD-Related Factor. Journal of Neurochemistry, 2001, 72, 1717-1724.	3.9	17
47	Movement of endoplasmic reticulum in the living axon is distinct from other membranous vesicles in its rate, form, and sensitivity to microtubule inhibitors. Journal of Neuroscience Research, 2001, 65, 236-246.	2.9	28
48	Desensitization of IP3-induced Ca2+ release by overexpression of a constitutively active Gqalpha protein converts ventral to dorsal fate in Xenopus early embryos. Development Growth and Differentiation, 2000, 42, 327-335.	1.5	11
49	DrosophilaAD3 mutation of synaptotagmin impairs calcium-dependent self-oligomerization activity. FEBS Letters, 2000, 482, 269-272.	2.8	24
50	Inositol 1,4,5-trisphosphate receptor associated with focal contact cytoskeletal proteins. FEBS Letters, 2000, 466, 29-34.	2.8	32
51	Requirement of the Inositol Trisphosphate Receptor for Activation of Store-Operated Ca ²⁺ Channels. Science, 2000, 287, 1647-1651.	12.6	548
52	Involvement of protein tyrosine phosphatases in activation of the trimeric G protein Gq/11. Oncogene, 1999, 18, 7399-7402.	5.9	13
53	Development of Purkinje cells in humans: an immunohistochemical study using a monoclonal antibody against the inositol 1, 4, 5-triphosphate type 1 receptor (IP 3 R1). Acta Neuropathologica, 1999, 98, 226-232.	7.7	30
54	Calmodulin inhibits inositol 1,4,5-trisphosphate-induced calcium release through the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Letters, 1999, 456, 322-326.	2.8	39

ΚΑΤΣUHIKO ΜΙΚΟSHIBA

#	Article	IF	CITATIONS
55	Metabolic labeling of a subset of glial cells by UDP-galactose: Implication for astrocyte lineage diversity. Journal of Neuroscience Research, 1998, 52, 173-183.	2.9	2
56	Adenophostin, a Potent Agonist of the Inositol 1,4,5-Trisphosphate Receptor, Is Useful for Fertilization of Mouse Oocytes Injected with Round Spermatids Leading to Normal Offspring1. Biology of Reproduction, 1998, 58, 867-873.	2.7	56
57	Molecular cloning and expression of a cDNA encoding an olfactory-specific mouse phenol sulphotransferase. Biochemical Journal, 1998, 331, 953-958.	3.7	29
58	Intracellular targeting and homotetramer formation of a truncated inositol 1,4,5-trisphosphate receptor–green fluorescent protein chimera in Xenopus laevis oocytes: evidence for the involvement of the transmembrane spanning domain in endoplasmic reticulum targeting and homotetramer complex formation. Biochemical Journal, 1997, 323, 273-280.	3.7	55
59	Regulation by bivalent cations of phospholipid binding to the C2A domain of synaptotagmin III. Biochemical Journal, 1997, 323, 421-425.	3.7	41
60	Scrambler and yotari disrupt the disabled gene and produce a reeler -like phenotype in mice. Nature, 1997, 389, 730-733.	27.8	604
61	The function of inositol high polyphosphate binding proteins. BioEssays, 1997, 19, 593-603.	2.5	102
62	EXPRESSION OF THE GREEN FLUORESCENT PROTEIN DERIVATIVE S65T IN <i>XENOPUS LAEVIS </i>OOCYTES . Biomedical Research, 1996, 17, 221-225.	0.9	2
63	Distribution of a reeler gene-related antigen in the developing cerebellum: An immunohistochemical study with an allogeneic antibody CR-50 on normal and reeler mice. , 1996, 372, 215-228.		97
64	argos is required for projection of photoreceptor axons during optic lobe development in Drosophila. Developmental Dynamics, 1996, 205, 162-171.	1.8	11
65	Unaltered ryanodine receptor protein levels in ischemic cardiomvopathy. Molecular and Cellular Biochemistry, 1996, 160-161, 297-302.	3.1	33
66	Microvesicle-mediated exocytosis of glutamate is a novel paracrine-like chemical transduction mechanism and inhibits melatonin secretion in rat pinealocytes. Journal of Pineal Research, 1996, 21, 175-191.	7.4	49
67	Functional Expression of the Type 1 Inositol 1,4,5â€Trisphosphate Receptor Promoterâ€ <i>lacZ</i> Fusion Genes in Transgenic Mice. Journal of Neurochemistry, 1996, 66, 1793-1801.	3.9	31
68	Adenophostin-medicated quantal Ca2+release in the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Letters, 1995, 368, 248-252.	2.8	84
69	Inositol 1,4,5â€Trisphosphate Receptorâ€Mediated Ca ²⁺ Signaling in the Brain. Journal of Neurochemistry, 1995, 64, 953-960.	3.9	171
70	Expression of Proteolipid Protein Gene Is Directly Associated with Secretion of a Factor Influencing Oligodendrocyte Development. Journal of Neurochemistry, 1995, 64, 2396-2403.	3.9	17
71	Alterations of Sarcoplasmic Reticulum Proteins in Failing Human Dilated Cardiomyopathy. Circulation, 1995, 92, 778-784.	1.6	427
72	Subtypes of inositol 1,4,5-trisphosphate receptor in human hematopoietic cell lines: Dynamic aspects of their cell-type specific expression. FEBS Letters, 1994, 349, 191-196.	2.8	61

ΚΑΤΣUΗΙΚΟ ΜΙΚΟSΗΙΒΑ

#	Article	IF	CITATIONS
73	Monoclonal antibodies distinctively recognizing the subtypes of inositol 1,4,5-trisphosphate receptor: Application to the studies on inflammatory cells. FEBS Letters, 1994, 354, 149-154.	2.8	84
74	A Novel Zinc Finger Protein, Zic, Is Involved in Neurogenesis, Especially in the Cell Lineage of Cerebellar Granule Cells. Journal of Neurochemistry, 1994, 63, 1880-1890.	3.9	220
75	Fate of Jimpyâ€Type Oligodendrocytes in Jimpy Heterozygote. Journal of Neurochemistry, 1994, 62, 1887-1893.	3.9	16
76	Novel Isoforms of Mouse Myelin Basic Protein Predominantly Expressed in Embryonic Stage. Journal of Neurochemistry, 1993, 60, 1554-1563.	3.9	36
77	Isolation of a Drosophila Gene Encoding a Head-Specific Guanylyl Cyclase. Journal of Neurochemistry, 1993, 60, 1570-1573.	3.9	27
78	An improved retroviral vector for assaying promoter activity. FEBS Letters, 1993, 315, 129-133.	2.8	27
79	Antibody to the inositol trisphosphate receptor blocks thimerosalenhanced Ca2+-induced Ca2+release and Ca2+oscillations in hamster eggs. FEBS Letters, 1992, 309, 180-184.	2.8	87
80	Retrovirus-mediated Gene Transfer Targeted to Malignant Glioma Cells in Murine Brain. Japanese Journal of Cancer Research, 1992, 83, 1244-1247.	1.7	19
81	The Inositol 1,4,5â€Trisphosphate Receptor. Novartis Foundation Symposium, 1992, 164, 17-35.	1.1	3
82	A Potential Approach for Gene Therapy Targeting Hepatoma Using a Liver-Specific Promoter on a Retroviral Vector Cell Structure and Function, 1991, 16, 503-510.	1.1	67