List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4064537/publications.pdf Version: 2024-02-01

IDENE ROZZONI

#	Article	IF	CITATIONS
1	Lnc-SMaRT Translational Regulation of Spire1, A New Player in Muscle Differentiation. Journal of Molecular Biology, 2022, 434, 167384.	2.0	0
2	Circular RNA ZNF609/CKAP5 mRNA interaction regulates microtubule dynamics and tumorigenicity. Molecular Cell, 2022, 82, 75-89.e9.	4.5	39
3	CircZNF609 as a prototype to elucidate the biological function of circRNA-mRNA interactions. Molecular and Cellular Oncology, 2022, 9, 2055939.	0.3	3
4	Best practice standards for circular RNA research. Nature Methods, 2022, 19, 1208-1220.	9.0	58
5	A multifunctional locus controls motor neuron differentiation through short and long noncoding RNAs. EMBO Journal, 2022, 41, .	3.5	8
6	Widespread occurrence of circular RNA in eukaryotes. Nature Reviews Genetics, 2021, 22, 550-551.	7.7	15
7	CircVAMP3: A circRNA with a Role in Alveolar Rhabdomyosarcoma Cell Cycle Progression. Genes, 2021, 12, 985.	1.0	8
8	A longitudinal study defined circulating microRNAs as reliable biomarkers for disease prognosis and progression in ALS human patients. Cell Death Discovery, 2021, 7, 4.	2.0	36
9	Circ-Hdgfrp3 shuttles along neurites and is trapped in aggregates formed by ALS-associated mutant FUS. IScience, 2021, 24, 103504.	1.9	14
10	Proteomics analysis of FUS mutant human motoneurons reveals altered regulation of cytoskeleton and other ALS-linked proteins via 3′UTR binding. Scientific Reports, 2020, 10, 11827.	1.6	18
11	Emerging Role for Linear and Circular Spermine Oxidase RNAs in Skeletal Muscle Physiopathology. International Journal of Molecular Sciences, 2020, 21, 8227.	1.8	10
12	Circular RNAs in cell differentiation and development. Development (Cambridge), 2020, 147, .	1.2	30
13	FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention. Nucleic Acids Research, 2020, 48, 6889-6905.	6.5	70
14	Modulation of circRNA Metabolism by m6A Modification. Cell Reports, 2020, 31, 107641.	2.9	217
15	Intronic Determinants Coordinate Charme IncRNA Nuclear Activity through the Interaction with MATR3 and PTBP1. Cell Reports, 2020, 33, 108548.	2.9	24
16	SMaRT IncRNA controls translation of a Gâ€quadruplex ontaining mRNA antagonizing the DHX36 helicase. EMBO Reports, 2020, 21, e49942.	2.0	20
17	Transâ€generational epigenetic regulation associated with the amelioration of Duchenne Muscular Dystrophy. EMBO Molecular Medicine, 2020, 12, e12063.	3.3	11
18	Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma. Oncogene, 2019, 38, 3843-3854.	2.6	76

#	Article	IF	CITATIONS
19	Mutant FUS and ELAVL4 (HuD) Aberrant Crosstalk in Amyotrophic Lateral Sclerosis. Cell Reports, 2019, 27, 3818-3831.e5.	2.9	51
20	Dysregulation of Circular RNAs in Myotonic Dystrophy Type 1. International Journal of Molecular Sciences, 2019, 20, 1938.	1.8	37
21	Increased FUS levels in astrocytes leads to astrocyte and microglia activation and neuronal death. Scientific Reports, 2019, 9, 4572.	1.6	34
22	The Long Non-coding RNA lnc-31 Interacts with Rock1 mRNA and Mediates Its YB-1-Dependent Translation. Cell Reports, 2018, 23, 733-740.	2.9	55
23	Characterization of the IncRNA transcriptome in mESC-derived motor neurons: Implications for FUS-ALS. Stem Cell Research, 2018, 27, 172-179.	0.3	27
24	A Regulatory Circuitry Between Gria2, miR-409, and miR-495 Is Affected by ALS FUS Mutation in ESC-Derived Motor Neurons. Molecular Neurobiology, 2018, 55, 7635-7651.	1.9	32
25	Protein complex scaffolding predicted as a prevalent function of long non-coding RNAs. Nucleic Acids Research, 2018, 46, 917-928.	6.5	76
26	miR-135a Regulates Synaptic Transmission and Anxiety-Like Behavior in Amygdala. Molecular Neurobiology, 2018, 55, 3301-3315.	1.9	43
27	Deficiency in the nuclear long noncoding <scp>RNA</scp> <i>Charme</i> causes myogenic defects and heart remodeling in mice. EMBO Journal, 2018, 37, .	3.5	65
28	Drosophila CG3303 is an essential endoribonuclease linked to TDP-43-mediated neurodegeneration. Scientific Reports, 2017, 7, 41559.	1.6	8
29	Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Molecular Cell, 2017, 66, 22-37.e9.	4.5	1,672
30	FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nature Communications, 2017, 8, 14741.	5.8	403
31	miR-142-3p Is a Key Regulator of IL-1β-Dependent Synaptopathy in Neuroinflammation. Journal of Neuroscience, 2017, 37, 546-561.	1.7	88
32	FUS Mutant Human Motoneurons Display Altered Transcriptome and microRNA Pathways with Implications for ALS Pathogenesis. Stem Cell Reports, 2017, 9, 1450-1462.	2.3	77
33	Circular RNAs Expression, Function, and Regulation in Neural Systems. , 2017, , 247-263.		1
34	miR-142-3p Is a Key Regulator of IL-1Î ² -Dependent Synaptopathy in Neuroinflammation. Journal of Neuroscience, 2017, 37, 546-561.	1.7	10
35	The long noncoding RNA linc-NeD125 controls the expression of medulloblastoma driver genes by microRNA sponge activity. Oncotarget, 2017, 8, 31003-31015.	0.8	56
36	The miR-223 host non-coding transcript linc-223 induces IRF4 expression in acute myeloid leukemia by acting as a competing endogenous RNA. Oncotarget, 2016, 7, 60155-60168.	0.8	35

#	Article	IF	CITATIONS
37	Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways. Acta Neuropathologica, 2016, 132, 175-196.	3.9	113
38	RNA-binding protein HuR and the members of the miR-200 family play an unconventional role in the regulation of c-Jun mRNA. Rna, 2016, 22, 1510-1521.	1.6	13
39	Differentiation of control and ALS mutant human iPSCs into functional skeletal muscle cells, a tool for the study of neuromuscolar diseases. Stem Cell Research, 2016, 17, 140-147.	0.3	31
40	Non-coding RNAs in muscle differentiation and musculoskeletal disease. Journal of Clinical Investigation, 2016, 126, 2021-2030.	3.9	75
41	ALS mutant FUS proteins are recruited into stress granules in induced Pluripotent Stem Cells (iPSCs) derived motoneurons. DMM Disease Models and Mechanisms, 2015, 8, 755-66.	1.2	121
42	Identification of linc-NeD125, a novel long non coding RNA that hosts miR-125b-1 and negatively controls proliferation of human neuroblastoma cells. RNA Biology, 2015, 12, 1323-1337.	1.5	23
43	Novel Long Noncoding RNAs (IncRNAs) in Myogenesis: a <i>miR-31</i> Overlapping IncRNA Transcript Controls Myoblast Differentiation. Molecular and Cellular Biology, 2015, 35, 728-736.	1.1	99
44	C/EBPα-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia. Oncotarget, 2015, 6, 18534-18544.	0.8	70
45	CEBPA-regulated IncRNAs, new players in the study of acute myeloid leukemia. Journal of Hematology and Oncology, 2014, 7, 69.	6.9	13
46	Mir-23a and mir-125b regulate neural stem/progenitor cell proliferation by targeting Musashi1. RNA Biology, 2014, 11, 1105-1112.	1.5	32
47	Long non-coding RNAs: new players in cell differentiation and development. Nature Reviews Genetics, 2014, 15, 7-21.	7.7	2,616
48	The Role of Long Noncoding RNAs in the Epigenetic Control of Gene Expression. ChemMedChem, 2014, 9, 505-510.	1.6	59
49	An ALS-associated mutation in the FUS 3′-UTR disrupts a microRNA–FUS regulatory circuitry. Nature Communications, 2014, 5, 4335.	5.8	102
50	A Feedforward Regulatory Loop between HuR and the Long Noncoding RNA linc-MD1 Controls Early Phases of Myogenesis. Molecular Cell, 2014, 53, 506-514.	4.5	202
51	TDP-43 Regulates the Microprocessor Complex Activity During In Vitro Neuronal Differentiation. Molecular Neurobiology, 2013, 48, 952-963.	1.9	59
52	Biogenesis and function of non-coding RNAs in muscle differentiation and in Duchenne muscular dystrophy. Biochemical Society Transactions, 2013, 41, 844-849.	1.6	38
53	Detrimental Effect of Class-selective Histone Deacetylase Inhibitors during Tissue Regeneration following Hindlimb Ischemia. Journal of Biological Chemistry, 2013, 288, 22915-22929.	1.6	29
54	Non Coding RNA in Muscle Differentiation and Disease. MicroRNA (Shariqah, United Arab Emirates), 2013, 2, 91-101.	0.6	1

#	Article	IF	CITATIONS
55	IFN-α Regulates Blimp-1 Expression via miR-23a and miR-125b in Both Monocytes-Derived DC and pDC. PLoS ONE, 2013, 8, e72833.	1.1	26
56	Acute Stress Alters Amygdala microRNA miR-135a and miR-124 Expression: Inferences for Corticosteroid Dependent Stress Response. PLoS ONE, 2013, 8, e73385.	1.1	72
57	FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO Journal, 2012, 31, 4502-4510.	3.5	201
58	U1 snRNA as an Effective Vector for Stable Expression of Antisense Molecules and for the Inhibition of the Splicing Reaction. Methods in Molecular Biology, 2012, 867, 239-257.	0.4	11
59	Exon 45 Skipping Through U1-snRNA Antisense Molecules Recovers the Dys-nNOS Pathway and Muscle Differentiation in Human DMD Myoblasts. Molecular Therapy, 2012, 20, 2134-2142.	3.7	45
60	HUVEC Respond to Radiation by Inducing the Expression of Pro-angiogenic MicroRNAs. Radiation Research, 2011, 175, 535.	0.7	31
61	A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA. Cell, 2011, 147, 358-369.	13.5	2,390
62	miRâ€31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Reports, 2011, 12, 136-141.	2.0	135
63	miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Molecular Medicine, 2011, 3, 258-265.	3.3	242
64	Identification of Smallâ€Molecule Inhibitors of the XendoU Endoribonucleases Family. ChemMedChem, 2011, 6, 1797-1805.	1.6	8
65	Critical Role of c-Myc in Acute Myeloid Leukemia Involving Direct Regulation of miR-26a and Histone Methyltransferase EZH2. Genes and Cancer, 2011, 2, 585-592.	0.6	87
66	Gene expression profiling identifies a subset of adult T-cell acute lymphoblastic leukemia with myeloid-like gene features and over-expression of miR-223. Haematologica, 2010, 95, 1114-1121.	1.7	45
67	A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation. Nucleic Acids Research, 2010, 38, 6895-6905.	6.5	110
68	Exon Skipping and Duchenne Muscular Dystrophy Therapy: Selection of the Most Active U1 snRNA Antisense Able to Induce Dystrophin Exon 51 Skipping. Molecular Therapy, 2010, 18, 1675-1682.	3.7	39
69	Stress induces region specific alterations in microRNAs expression in mice. Behavioural Brain Research, 2010, 208, 265-269.	1.2	140
70	MicroRNAs Involved in Molecular Circuitries Relevant for the Duchenne Muscular Dystrophy Pathogenesis Are Controlled by the Dystrophin/nNOS Pathway. Cell Metabolism, 2010, 12, 341-351.	7.2	228
71	Coupled RNA Processing and Transcription of Intergenic Primary MicroRNAs. Molecular and Cellular Biology, 2009, 29, 5632-5638.	1.1	101
72	Gene-mediated Restoration of Normal Myofiber Elasticity in Dystrophic Muscles. Molecular Therapy, 2009. 17. 19-25.	3.7	48

#	Article	IF	CITATIONS
73	MicroRNA profiling in human medulloblastoma. International Journal of Cancer, 2009, 124, 568-577.	2.3	278
74	Role of microRNAs in hematological malignancies. Expert Review of Hematology, 2009, 2, 415-423.	1.0	3
75	NFI-A directs the fate of hematopoietic progenitors to the erythroid or granulocytic lineage and controls β-globin and G-CSF receptor expression. Blood, 2009, 114, 1753-1763.	0.6	57
76	Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO Journal, 2008, 27, 2616-2627.	3.5	303
77	Primary microRNA transcripts are processed co-transcriptionally. Nature Structural and Molecular Biology, 2008, 15, 902-909.	3.6	335
78	The Tumor Marker Human Placental Protein 11 Is an Endoribonuclease. Journal of Biological Chemistry, 2008, 283, 34712-34719.	1.6	42
79	microRNAs as prime players in a combinatorial view of evolution. RNA Biology, 2008, 5, 120-122.	1.5	9
80	Long-Term Benefit of Adeno-Associated Virus/Antisense-Mediated Exon Skipping in Dystrophic Mice. Human Gene Therapy, 2008, 19, 601-608.	1.4	65
81	Role of microRNAs in myeloid differentiation. Biochemical Society Transactions, 2008, 36, 1201-1205.	1.6	19
82	The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7957-7962.	3.3	141
83	Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia. Blood, 2007, 109, 4432-4440.	0.6	82
84	Large-scale purification and crystallization of the endoribonuclease XendoU: troubleshooting with His-tagged proteins. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 298-301.	0.7	19
85	A nucleolar localizing Rev binding element inhibits HIV replication. AIDS Research and Therapy, 2006, 3, 13.	0.7	29
86	The position of yeast snoRNA-coding regions within host introns is essential for their biosynthesis and for efficient splicing of the host pre-mRNA. Rna, 2006, 13, 138-150.	1.6	25
87	Chimeric Adeno-Associated Virus/Antisense U1 Small Nuclear RNA Effectively Rescues Dystrophin Synthesis and Muscle Function by Local Treatment of mdx Mice. Human Gene Therapy, 2006, 17, 565-574.	1.4	45
88	Body-wide gene therapy of Duchenne muscular dystrophy in the mdx mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3758-3763.	3.3	134
89	Preferential silencing of a common dominant rhodopsin mutation does not inhibit retinal degeneration in a transgenic model. Molecular Therapy, 2006, 14, 692-699.	3.7	39
90	The structure of the endoribonuclease XendoU: From small nucleolar RNA processing to severe acute respiratory syndrome coronavirus replication. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12365-12370.	3.3	51

#	Article	IF	CITATIONS
91	Chimeric Adeno-Associated Virus/Antisense U1 Small Nuclear RNA Effectively Rescues Dystrophin Synthesis and Muscle Function by Local Treatment of mdx Mice. Human Gene Therapy, 2006, .	1.4	0
92	Functional Characterization of XendoU, the Endoribonuclease Involved in Small Nucleolar RNA Biosynthesis*. Journal of Biological Chemistry, 2005, 280, 18996-19002.	1.6	48
93	Rrp15p, a novel component of pre-ribosomal particles required for 60S ribosome subunit maturation. Rna, 2005, 11, 495-502.	1.6	26
94	The Cotranscriptional Assembly of snoRNPs Controls the Biosynthesis of H/ACA snoRNAs in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2005, 25, 5396-5403.	1.1	76
95	A loxP-Containing pol II Promoter for RNA Interference is Reversibly Regulated by Cre Recombinase. RNA Biology, 2005, 2, 86-92.	1.5	9
96	A Minicircuitry Comprised of MicroRNA-223 and Transcription Factors NFI-A and C/EBPα Regulates Human Granulopoiesis. Cell, 2005, 123, 819-831.	13.5	935
97	Msx2 and Necdin Combined Activities Are Required for Smooth Muscle Differentiation in Mesoangioblast Stem Cells. Circulation Research, 2004, 94, 1571-1578.	2.0	79
98	Coupling between snoRNP assembly and 3′ processing controls box C/D snoRNA biosynthesis in yeast. EMBO Journal, 2004, 23, 2392-2401.	3.5	45
99	A new vector, based on the PolII promoter for the U1 snRNA gene, for the expression of siRNAs in mammalian cells. Molecular Therapy, 2004, 10, 191-199.	3.7	76
100	TOP Promoter Elements Control the Relative Ratio of Intron-encoded snoRNA Versus Spliced mRNA Biosynthesis. Journal of Molecular Biology, 2004, 344, 383-394.	2.0	14
101	Purification, Cloning, and Characterization of XendoU, a Novel Endoribonuclease Involved in Processing of Intron-encoded Small Nucleolar RNAs in Xenopus laevis. Journal of Biological Chemistry, 2003, 278, 13026-13032.	1.6	81
102	Cic1p/Nsa3p is required for synthesis and nuclear export of 60S ribosomal subunits. Rna, 2003, 9, 1431-1436.	1.6	35
103	Functional Analysis of Yeast snoRNA and snRNA 3′-End Formation Mediated by Uncoupling of Cleavage and Polyadenylation. Molecular and Cellular Biology, 2002, 22, 1379-1389.	1.1	67
104	Chimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in Â48-50 DMD cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9456-9461.	3.3	118
105	Purified Box C/D snoRNPs Are Able To Reproduce Site-Specific 2′-O-Methylation of Target RNA In Vitro. Molecular and Cellular Biology, 2002, 22, 6663-6668.	1.1	84
106	Additive and antagonist effects of therapeutic gene combinations for suppression of HIV-1 infection. Antiviral Research, 2002, 55, 77-90.	1.9	2
107	Characterization of the sequences encoding for Xenopus laevis box C/D snoRNP Nop56 protein. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1575, 26-30.	2.4	4
108	U86, a Novel snoRNA with an Unprecedented Gene Organization in Yeast. Biochemical and Biophysical Research Communications, 2001, 288, 16-21.	1.0	11

#	Article	IF	CITATIONS
109	Fibrillarin binds directly and specifically to U16 box C/D snoRNA. Rna, 2000, 6, 88-95.	1.6	38
110	p62, a novel Xenopus laevis component of box C/D snoRNPs. Rna, 2000, 6, 391-401.	1.6	7
111	Identification of a Novel Element Required for Processing of Intron-Encoded Box C/D Small Nucleolar RNAs in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2000, 20, 1311-1320.	1.1	36
112	The Rev protein is able to transport to the cytoplasm small nucleolar RNAs containing a Rev binding element. Rna, 1999, 5, 993-1002.	1.6	23
113	Inhibition of Human Immunodeficiency Virus Type 1 Replication by Nuclear Chimeric Anti-HIV Ribozymes in a Human T Lymphoblastoid Cell Line. Human Gene Therapy, 1998, 9, 621-628.	1.4	31
114	In Vivo Identification of Nuclear Factors Interacting with the Conserved Elements of Box C/D Small Nucleolar RNAs. Molecular and Cellular Biology, 1998, 18, 1023-1028.	1.1	47
115	Processing of the Intron-Encoded U18 Small Nucleolar RNA in the Yeast <i>Saccharomyces cerevisiae</i> Relies on Both Exo- and Endonucleolytic Activities. Molecular and Cellular Biology, 1998, 18, 3376-3383.	1.1	61
116	A Novel Mn++-Dependent Ribonuclease That Functions in U16 SnoRNA Processing inX.Laevis Biochemical and Biophysical Research Communications, 1997, 233, 514-517.	1.0	15
117	Biosynthesis of U16 snoRNA in Early Development ofX. laevis. Biochemical and Biophysical Research Communications, 1997, 241, 486-490.	1.0	Ο
118	Self-cleaving motifs are found in close proximity to the sites utilized for U16 snoRNA processing. Gene, 1995, 163, 221-226.	1.0	6
119	Two different snoRNAs are encoded in introns of amphibian and human L1 ribosomal protein genes. Nucleic Acids Research, 1993, 21, 5824-5830.	6.5	61
120	The primary sequence of theSchizosaccharomyces pombeprotein homologous toS.cerevisiaeribosomal protein L2. Nucleic Acids Research, 1993, 21, 3900-3900.	6.5	4
121	The mechanisms controlling ribosomal protein L1 pre-mRNA splicing are maintained in evolution and rely on conserved intron sequences. Nucleic Acids Research, 1992, 20, 4473-4479.	6.5	24
122	Inefficient in vitro splicing of the regulatory intron of the L1 ribosomal protein gene of X.laevis depends on suboptimal splice site sequences. Biochemical and Biophysical Research Communications, 1992, 183, 680-687.	1.0	15
123	Splicing Control and Nucleus/Cytoplasm Compartmentalization of Ribosomal Protein L1 RNA in X. Laevis Oocytes. , 1990, , 95-98.		0
124	Expression of ribosomal protein genes and regulation of ribosome biosynthesis in Xenopus development. Trends in Biochemical Sciences, 1989, 14, 175-178.	3.7	80
125	Complementarity of conserved sequence elements present in 28S ribosomal RNA and in ribosomal protein genes of Xenopus laevis and Xenopus tropicalis. Gene, 1986, 49, 371-376.	1.0	13
126	Sequences coding for the ribosomal protein L14in Xenopus laevisandXenopus tropicalis; homologies in the 5′ untranslated region are shared with other r-protein mRNAs. Nucleic Acids Research, 1986, 14, 7633-7646.	6.5	38

#	Article	IF	CITATIONS
127	Ribosomal-protein synthesis is not autogenously regulated at the translational level in Xenopus laevis. Developmental Biology, 1985, 107, 281-289.	0.9	28
128	Expression of two Xenopus laevis ribosomal protein genes in injected frog oocytes. Journal of Molecular Biology, 1984, 180, 987-1005.	2.0	89
129	Splicing of Xenopus laevis ribosomal protein RNAs is inhibited in vivo by antisera to ribonucleoproteins containing U1 small nuclear RNA. Journal of Molecular Biology, 1984, 180, 1173-1178.	2.0	56
130	Characterization of histone genes isolated fromXenopus laevisandXenopus tropicalisgenomic libraries. Nucleic Acids Research, 1982, 10, 7543-7559.	6.5	35
131	Nucleotide sequences of cloned cDNA fragments specific for six Xenopus laevis ribosomal proteins. Gene, 1982, 17, 311-316.	1.0	59
132	Isolation and structural analysis of ribosomal protein genes in Xenopus laevis. Journal of Molecular Biology, 1982, 161, 353-371.	2.0	33
133	Replication of Ribosomal DNA in Xenopus laevis. FEBS Journal, 1981, 118, 585-590.	0.2	60
134	Xenopus laevis ribosomal protein genes: isolation of recombinant cDNA clones and study of the genomic organization. Nucleic Acids Research, 1981, 9, 1069-1086.	6.5	95
135	Electron microscopic analysis of DNA replication in eukaryotes. Bollettino Di Zoologia, 1980, 47, 253-261.	0.3	0
136	Construction of a recombinant bacterial plasmid containing DNA sequences for a mouse embryonic globin chain. Nucleic Acids Research, 1979, 6, 3505-3518.	6.5	23
137	Clustered and interspersed repetitive DNA sequences in four amphibian species with different genome size. Nucleic Acids and Protein Synthesis, 1978, 520, 245-252.	1.7	9