List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/406219/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Optimization of Microwave Assisted Extraction Conditions to Improve Phenolic Content and In Vitro Antioxidant and Anti-Microbial Activity in Quercus cerris Bark Extracts. Plants, 2022, 11, 240.	3.5	20
2	Optimized ultrasound-assisted extraction of phenolic compounds from Thymus comosus Heuff. ex Griseb. et Schenk (wild thyme) and their bioactive potential. Ultrasonics Sonochemistry, 2022, 84, 105954.	8.2	27
3	Biological Activities of Some Isoquinoline Alkaloids from Fumaria schleicheri Soy. Will Plants, 2022, 11, 1202.	3.5	12
4	Optimized Ultrasound-Assisted Enzymatic Extraction of Phenolic Compounds from Rosa canina L. Pseudo-Fruits (Rosehip) and Their Biological Activity. Antioxidants, 2022, 11, 1123.	5.1	20
5	Natural products in diabetes research: quantitative literature analysis. Natural Product Research, 2021, 35, 5813-5827.	1.8	41
6	Zeaxanthin-Rich Extract from Superfood Lycium barbarum Selectively Modulates the Cellular Adhesion and MAPK Signaling in Melanoma versus Normal Skin Cells In Vitro. Molecules, 2021, 26, 333.	3.8	20
7	Phytochemical Characterization and Evaluation of Bioactive Properties of Tisanes Prepared from Promising Medicinal and Aromatic Plants. Foods, 2021, 10, 475.	4.3	4
8	Chemical Composition, Diuretic, and Antityrosinase Activity of Traditionally Used Romanian Cerasorum stipites. Frontiers in Pharmacology, 2021, 12, 647947.	3.5	16
9	Unravelling the Phytochemical Composition and the Pharmacological Properties of an Optimized Extract from the Fruit from Prunus mahaleb L.: From Traditional Liqueur Market to the Pharmacy Shelf. Molecules, 2021, 26, 4422.	3.8	14
10	Natural Resources for Human Health: A New Interdisciplinary Journal Dedicated to Natural Sciences. , 2021, 1, 1-2.		0
11	Berry polyphenols and human health: evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Current Opinion in Food Science, 2021, 42, 167-186.	8.0	103
12	Optimization of the drying process of autumn fruits rich in antioxidants: a study focusing on rosehip (<i>Rosa canina</i> L.) and sea buckthorn (<i>Elaeagnus rhamnoides</i> (L.) A. Nelson) and their bioactive properties. Food and Function, 2021, 12, 3939-3953.	4.6	12
13	Development of an Optimized Drying Process for the Recovery of Bioactive Compounds from the Autumn Fruits of Berberis vulgaris L. and Crataegus monogyna Jacq Antioxidants, 2021, 10, 1579.	5.1	10
14	Editorial: Targeting Human Inflammatory Skin Diseases With Natural Products: Exploring Potential Mechanisms and Regulatory Pathways. Frontiers in Pharmacology, 2021, 12, 791151.	3.5	2
15	Exploring the phytochemical profile of Cytinus hypocistis (L.) L. as a source of health-promoting biomolecules behind its in vitro bioactive and enzyme inhibitory properties. Food and Chemical Toxicology, 2020, 136, 111071.	3.6	17
16	Phenolic Profile and Bioactivities of Sideritis perfoliata L.: The Plant, Its Most Active Extract, and Its Broad Biological Properties. Frontiers in Pharmacology, 2020, 10, 1642.	3.5	17
17	The Chemical and Biological Profiles of Leaves from Commercial Blueberry Varieties. Plants, 2020, 9, 1193.	3.5	28
18	Effects of Processing on Polyphenolic and Volatile Composition and Fruit Quality of Clery Strawberries. Antioxidants, 2020, 9, 632.	5.1	16

#	Article	IF	CITATIONS
19	Taming the pandemic? The importance of homemade plant-based foods and beverages as community responses to COVID-19. Journal of Ethnobiology and Ethnomedicine, 2020, 16, 75.	2.6	36
20	Antioxidant Effects of Walnut (Juglans regia L.) Kernel and Walnut Septum Extract in a D-Galactose-Induced Aging Model and in Naturally Aged Rats. Antioxidants, 2020, 9, 424.	5.1	44
21	Walnut (Juglans regia L.) Septum: Assessment of Bioactive Molecules and In Vitro Biological Effects. Molecules, 2020, 25, 2187.	3.8	41
22	Nutrient and Sensory Metabolites Profiling of Averrhoa Carambola L. (Starfruit) in the Context of Its Origin and Ripening Stage by GC/MS and Chemometric Analysis. Molecules, 2020, 25, 2423.	3.8	19
23	Chemical Constituents and Biologic Activities of Sage Species: A Comparison between Salvia officinalis L., S. glutinosa L. and S. transsylvanica (Schur ex Griseb. & Schenk) Schur. Antioxidants, 2020, 9, 480.	5.1	36
24	Chemical Composition and Biological Activities of the Nord-West Romanian Wild Bilberry (Vaccinium) Tj ETQq0	0 0_rgBT /	Overlock 10 T
25	Effects of Lycium barbarum L. Polysaccharides on Inflammation and Oxidative Stress Markers in a Pressure Overload-Induced Heart Failure Rat Model. Molecules, 2020, 25, 466.	3.8	23
26	<i>Food Frontiers</i> : An academically sponsored new journal. Food Frontiers, 2020, 1, 3-5.	7.4	1
27	Biological Activities of Snowdrop (Galanthus spp., Family Amaryllidaceae). Frontiers in Pharmacology, 2020, 11, 552453.	3.5	9
28	Natural products, the continuous source of therapeutic molecules for various diseases: literature landscape analysis. Current Molecular Pharmacology, 2020, 13, .	1.5	1
29	Health Benefits of Nut Consumption in Middle-Aged and Elderly Population. Antioxidants, 2019, 8, 302.	5.1	39
30	Arctium Species Secondary Metabolites Chemodiversity and Bioactivities. Frontiers in Plant Science, 2019, 10, 834.	3.6	38
31	Evaluation of bioactive compounds-loaded chitosan films as a novel and potential diabetic wound dressing material. Reactive and Functional Polymers, 2019, 145, 104369.	4.1	46
32	Enhanced Recovery of Antioxidant Compounds from Hazelnut (Corylus avellana L.) Involucre Based on Extraction Optimization: Phytochemical Profile and Biological Activities. Antioxidants, 2019, 8, 460.	5.1	37
33	Investigation of In Vitro Antioxidant and Antibacterial Potential of Silver Nanoparticles Obtained by Biosynthesis Using Beech Bark Extract. Antioxidants, 2019, 8, 459.	5.1	29
34	Antibacterial and Antioxidant Potential of Silver Nanoparticles Biosynthesized Using the Spruce Bark Extract. Nanomaterials, 2019, 9, 1541.	4.1	43
35	Biological and Chemical Insights of Beech (Fagus sylvatica L.) Bark: A Source of Bioactive Compounds with Functional Properties. Antioxidants, 2019, 8, 417.	5.1	43
36	Compositional Features and Bioactive Properties of Aloe vera Leaf (Fillet, Mucilage, and Rind) and Flower. Antioxidants, 2019, 8, 444.	5.1	56

#	Article	IF	CITATIONS
37	Purification and identification of an antioxidative peptide from peony (Paeonia suffruticosa Andr.) seed dreg. Food Chemistry, 2019, 285, 266-274.	8.2	57
38	Medicinal Plants and Natural Products Used in Cataract Management. Frontiers in Pharmacology, 2019, 10, 466.	3.5	38
39	Phenolic Compounds from Five Ericaceae Species Leaves and Their Related Bioavailability and Health Benefits. Molecules, 2019, 24, 2046.	3.8	69
40	Biologically Active Ajuga Species Extracts Modulate Supportive Processes for Cancer Cell Development. Frontiers in Pharmacology, 2019, 10, 334.	3.5	15
41	Metabolites profiling of Ziziphus leaf taxa via UHPLC/PDA/ESI-MS in relation to their biological activities. Food Chemistry, 2019, 293, 233-246.	8.2	31
42	Comparative Phytochemical Profile, Antioxidant, Antimicrobial and In Vivo Anti-Inflammatory Activity of Different Extracts of Traditionally Used Romanian Ajuga genevensis L. and A. reptans L. (Lamiaceae). Molecules, 2019, 24, 1597.	3.8	35
43	Profiling Metabolites and Biological Activities of Sugarcane (Saccharum officinarum Linn.) Juice and its Product Molasses via a Multiplex Metabolomics Approach. Molecules, 2019, 24, 934.	3.8	36
44	Benefits of tree nut consumption on aging and age-related diseases: Mechanisms of actions. Trends in Food Science and Technology, 2019, 88, 104-120.	15.1	35
45	Curcumin: Total-Scale Analysis of the Scientific Literature. Molecules, 2019, 24, 1393.	3.8	48
46	Liquid Phase and Microwave-Assisted Extractions for Multicomponent Phenolic Pattern Determination of Five Romanian Galium Species Coupled with Bioassays. Molecules, 2019, 24, 1226.	3.8	24
47	Development of bioactive compounds-loaded chitosan films by using a QbD approach – A novel and potential wound dressing material. Reactive and Functional Polymers, 2019, 138, 46-54.	4.1	35
48	Polyphenols from Lycium barbarum (Goji) Fruit European Cultivars at Different Maturation Steps: Extraction, HPLC-DAD Analyses, and Biological Evaluation. Antioxidants, 2019, 8, 562.	5.1	33
49	Ethnopharmacological Applications Targeting Alcohol Abuse: Overview and Outlook. Frontiers in Pharmacology, 2019, 10, 1593.	3.5	10
50	Anti-aging potential of tree nuts with a focus on the phytochemical composition, molecular mechanisms and thermal stability of major bioactive compounds. Food and Function, 2018, 9, 2554-2575.	4.6	45
51	Phytochemicals as potent modulators of autophagy for cancer therapy. Cancer Letters, 2018, 424, 46-69.	7.2	81
52	Vascular smooth muscle cell proliferation as a therapeutic target. Part 2: Natural products inhibiting proliferation. Biotechnology Advances, 2018, 36, 1608-1621.	11.7	38
53	Phytopharmacology of Acerola (Malpighia spp.) and its potential as functional food. Trends in Food Science and Technology, 2018, 74, 99-106.	15.1	78
54	UHPLC-QTOF-MS analysis of bioactive constituents from two Romanian Goji (Lycium barbarum L.) berries cultivars and their antioxidant, enzyme inhibitory, and real-time cytotoxicological evaluation. Food and Chemical Toxicology, 2018, 115, 414-424.	3.6	86

#	Article	IF	CITATIONS
55	Insight into the biological properties and phytochemical composition of Ballota macrodonta Boiss. et Balansa, — an endemic medicinal plant from Turkey. Industrial Crops and Products, 2018, 113, 422-428.	5.2	15
56	Chitosan nanoparticles having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. Scientific Reports, 2018, 8, 2485.	3.3	109
57	Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways. Biotechnology Advances, 2018, 36, 1586-1607.	11.7	78
58	Development of novel techniques to extract phenolic compounds from Romanian cultivars of Prunus domestica L. and their biological properties. Food and Chemical Toxicology, 2018, 119, 189-198.	3.6	40
59	Functional constituents of six wild edible Silene species: A focus on their phytochemical profiles and bioactive properties. Food Bioscience, 2018, 23, 75-82.	4.4	28
60	Chemical composition and biological activities of extracts from three Salvia species: S. blepharochlaena, S. euphratica var. leiocalycina, and S. verticillata subsp. amasiaca. Industrial Crops and Products, 2018, 111, 11-21.	5.2	89
61	Pecan nuts: A review of reported bioactivities and health effects. Trends in Food Science and Technology, 2018, 71, 246-257.	15.1	97
62	Chemical composition and bioactive properties of the wild mushroom Polyporus squamosus (Huds.) Fr: a study with samples from Romania. Food and Function, 2018, 9, 160-170.	4.6	33
63	Identification of phenolic components via LC–MS analysis and biological activities of two Centaurea species: C. drabifolia subsp. drabifolia and C. lycopifolia. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 436-441.	2.8	35
64	Biological effects and chemical characterization of Iris schachtii Markgr. extracts: A new source of bioactive constituents. Food and Chemical Toxicology, 2018, 112, 448-457.	3.6	27
65	Bioactive isoflavones from Pueraria lobata root and starch: Different extraction techniques and carbonic anhydrase inhibition. Food and Chemical Toxicology, 2018, 112, 441-447.	3.6	50
66	Innovative Extraction Techniques and Hyphenated Instrument Configuration for Complex Matrices Analysis. Molecules, 2018, 23, 2391.	3.8	0
67	Process Optimization for Improved Phenolic Compounds Recovery from Walnut (Juglans regia L.) Septum: Phytochemical Profile and Biological Activities. Molecules, 2018, 23, 2814.	3.8	54
68	Development of a NIR Method for the In-Line Quantification of the Total Polyphenolic Content: A Study Applied on Ajuga genevensis L. Dry Extract Obtained in a Fluid Bed Process. Molecules, 2018, 23, 2152.	3.8	4
69	Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders. Frontiers in Pharmacology, 2018, 9, 557.	3.5	278
70	Let food be thy medicine and medicine be thy food: A bibliometric analysis of the most cited papers focusing on nutraceuticals and functional foods. Food Chemistry, 2018, 269, 455-465.	8.2	60
71	Phytochemical Composition, Antioxidant, Antimicrobial and in Vivo Anti-inflammatory Activity of Traditionally Used Romanian Ajuga laxmannii (Murray) Benth. ("Nobleman's Beard―– Barba ÃŽmpÄfra Frontiers in Pharmacology, 2018, 9, 7.	at slis i).	41
72	Ethnopharmacological Approaches for Dementia Therapy and Significance of Natural Products and Herbal Drugs. Frontiers in Aging Neuroscience, 2018, 10, 3.	3.4	93

#	Article	IF	CITATIONS
73	Phytochemical Analysis, Antioxidant and Antimicrobial Activities of Helichrysum arenarium (L.) Moench. and Antennaria dioica (L.) Gaertn. Flowers. Molecules, 2018, 23, 409.	3.8	49
74	Functional constituents of wild and cultivated Goji (<i>L. barbarum</i> L.) leaves: phytochemical characterization, biological profile, and computational studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 153-168.	5.2	151
75	Shedding light on the biological and chemical fingerprints of three Achillea species (A. biebersteinii,) Tj ETQq1 1	0.784314 4.6	ŀrg₿Ţ /Overlo
76	UHPLC high resolution orbitrap metabolomic fingerprinting of the unique species Ophryosporus triangularis Meyen from the Atacama Desert, Northern Chile. Revista Brasileira De Farmacognosia, 2017, 27, 179-187.	1.4	16
77	Flavonoids and platelet aggregation: A brief review. European Journal of Pharmacology, 2017, 807, 91-101.	3.5	149
78	Therapeutic role of sirtuins in neurodegenerative disease and their modulation by polyphenols. Neuroscience and Biobehavioral Reviews, 2017, 73, 39-47.	6.1	77
79	Anti-diabetic and anti-hyperlipidemic properties of Capparis spinosa L.: In vivo and in vitro evaluation of its nutraceutical potential. Journal of Functional Foods, 2017, 35, 32-42.	3.4	113
80	High resolution UHPLC-MS characterization and isolation of main compounds from the antioxidant medicinal plant Parastrephia lucida (Meyen). Saudi Pharmaceutical Journal, 2017, 25, 1032-1039.	2.7	28
81	Euphorbia denticulata Lam.: A promising source of phyto-pharmaceuticals for the development of novel functional formulations. Biomedicine and Pharmacotherapy, 2017, 87, 27-36.	5.6	76
82	A comprehensive review on biological properties of citrinin. Food and Chemical Toxicology, 2017, 110, 130-141.	3.6	78
83	Hepatoprotective naphthalene diglucoside from Neanotis wightiana aerial parts. Phytomedicine, 2017, 33, 14-20.	5.3	4
84	Traditionally Used Lathyrus Species: Phytochemical Composition, Antioxidant Activity, Enzyme Inhibitory Properties, Cytotoxic Effects, and in silico Studies of L. czeczottianus and L. nissolia. Frontiers in Pharmacology, 2017, 8, 83.	3.5	55
85	Cytotoxic and Enzyme Inhibitory Potential of Two Potentilla species (P. speciosa L. and P. reptans) Tj ETQq1 1 C).784314 r	gBT_/Overloc
86	Amorpha fruticosa – A Noxious Invasive Alien Plant in Europe or a Medicinal Plant against Metabolic Disease?. Frontiers in Pharmacology, 2017, 8, 333.	3.5	31
87	Veronica officinalis Product Authentication Using DNA Metabarcoding and HPLC-MS Reveals Widespread Adulteration with Veronica chamaedrys. Frontiers in Pharmacology, 2017, 8, 378.	3.5	69
88	Significance of Microbiota in Obesity and Metabolic Diseases and the Modulatory Potential by Medicinal Plant and Food Ingredients. Frontiers in Pharmacology, 2017, 8, 387.	3.5	85
89	High Resolution UHPLC-MS Metabolomics and Sedative-Anxiolytic Effects of Latua pubiflora: A Mystic Plant used by Mapuche Amerindians. Frontiers in Pharmacology, 2017, 8, 494.	3.5	5
90	Ethnopharmacological Approaches for Therapy of Jaundice: Part I. Frontiers in Pharmacology, 2017, 8, 518.	3.5	23

#	Article	IF	CITATIONS
91	Ethnopharmacological Approaches for Therapy of Jaundice: Part II. Highly Used Plant Species from Acanthaceae, Euphorbiaceae, Asteraceae, Combretaceae, and Fabaceae Families. Frontiers in Pharmacology, 2017, 8, 519.	3.5	27
92	Evaluation of Polyphenolic Content, Antioxidant and Diuretic Activities of Six Fumaria Species. Molecules, 2017, 22, 639.	3.8	38
93	Oleuropein and Cancer Chemoprevention: The Link is Hot. Molecules, 2017, 22, 705.	3.8	57
94	Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy. International Journal of Molecular Sciences, 2017, 18, 643.	4.1	97
95	Total Phenolics, Flavonoids, Condensed Tannins Content of Eight Centaurea Species and Their Broad Inhibitory Activities against Cholinesterase, Tyrosinase, α-Amylase and α-Glucosidase. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2016, 44, 195-200.	1.1	40
96	Does a Graphical Abstract Bring More Visibility to Your Paper?. Molecules, 2016, 21, 1247.	3.8	38
97	Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders. Molecules, 2016, 21, 807.	3.8	128
98	Cynaropicrin: A Comprehensive Research Review and Therapeutic Potential As an Anti-Hepatitis C Virus Agent. Frontiers in Pharmacology, 2016, 7, 472.	3.5	56
99	Enzymatic assays and molecular modeling studies of <i>Schisandra chinensis</i> lignans and phenolics from fruit and leaf extracts. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 200-210.	5.2	62
100	High resolution metabolite fingerprinting of the resin of Baccharis tola Phil. from the Atacama Desert and its antioxidant capacities. Industrial Crops and Products, 2016, 94, 368-375.	5.2	23
101	Phenolic compounds and biological effects of edible Rumex scutatus and Pseudosempervivum sempervivum: potential sources of natural agents with health benefits. Food and Function, 2016, 7, 3252-3262.	4.6	63
102	Biological and chemical insights of Morina persica L.: A source of bioactive compounds with multifunctional properties. Journal of Functional Foods, 2016, 25, 94-109.	3.4	66
103	Determination of lignans and phenolic components of Schisandra chinensis (Turcz.) Baill. using HPLC-ESI-ToF-MS and HPLC-online TEAC: Contribution of individual components to overall antioxidant activity and comparison with traditional antioxidant assays. Journal of Functional Foods, 2016, 24, 579-594.	3.4	93
104	Comparative polyphenolic content and antioxidant activities of Genista tinctoria L. and Genistella sagittalis (L.) Gams (Fabaceae). Pakistan Journal of Pharmaceutical Sciences, 2016, 29, 301-7.	0.2	3
105	In vitro Antitumour Activity of Tomato-Extracted Carotenoids on Human Colorectal Carcinoma. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43, 293-301.	1.1	7
106	Phytochemical Characterization of Veronica officinalis L., V. teucrium L. and V. orchidea Crantz from Romania and Their Antioxidant and Antimicrobial Properties. International Journal of Molecular Sciences, 2015, 16, 21109-21127.	4.1	48
107	Comparative Studies on Polyphenolic Composition, Antioxidant and Diuretic Effects of Nigella sativa L. (Black Cumin) and Nigella damascena L. (Lady-in-a-Mist) Seeds. Molecules, 2015, 20, 9560-9574.	3.8	79
108	Antioxidant, Antimicrobial Effects and Phenolic Profile of Lycium barbarum L. Flowers. Molecules, 2015, 20, 15060-15071.	3.8	24

#	Article	IF	CITATIONS
109	Antimicrobial and Antioxidant Activities and Phenolic Profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) K.D. Hill & L.A.S. Johnson Leaves. Molecules, 2015, 20, 4720-4734.	3.8	57
110	Comparative studies on antioxidant activity and polyphenolic content of Lycium barbarum L. and Lycium chinense Mill. leaves. Pakistan Journal of Pharmaceutical Sciences, 2015, 28, 1511-5.	0.2	12
111	Comparative Studies on Polyphenolic Composition, Antioxidant and Antimicrobial Activities of Schisandra chinensis Leaves and Fruits. Molecules, 2014, 19, 15162-15179.	3.8	95
112	Polyphenolic Content, Antioxidant and Antimicrobial Activities of Lycium barbarum L. and Lycium chinense Mill. Leaves. Molecules, 2014, 19, 10056-10073.	3.8	134