Yuelin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4062049/publications.pdf Version: 2024-02-01

VUELIN ZHANC

#	Article	IF	CITATIONS
1	From blooms to brooms. Trends in Microbiology, 2022, 30, 3-5.	7.7	1
2	MAP kinase cascades in plant development and immune signaling. EMBO Reports, 2022, 23, e53817.	4.5	41
3	The N-terminally truncated helper NLR <i>NRG1C</i> antagonizes immunity mediated by its full-length neighbors <i>NRG1A</i> and <i>NRG1B</i> . Plant Cell, 2022, 34, 1621-1640.	6.6	22
4	Receptorâ€like kinases MDS1 and MDS2 promote SUMM2â€mediated immunity. Journal of Integrative Plant Biology, 2021, 63, 277-282.	8.5	10
5	Short―and longâ€distance signaling in plant defense. Plant Journal, 2021, 105, 505-517.	5.7	34
6	Engineering plant disease resistance against biotrophic pathogens. Current Opinion in Plant Biology, 2021, 60, 101987.	7.1	18
7	Salicylic Acid: Biosynthesis and Signaling. Annual Review of Plant Biology, 2021, 72, 761-791.	18.7	193
8	Calcium channels at the center of nucleotide-binding leucine-rich repeat receptor-mediated plant immunity. Journal of Genetics and Genomics, 2021, 48, 429-432.	3.9	0
9	Pectin Modification in Seed Coat Mucilage by <i>In Vivo</i> Expression of Rhamnogalacturonan-I- and Homogalacturonan-Degrading Enzymes. Plant and Cell Physiology, 2021, 62, 1912-1926.	3.1	8
10	WRKY54 and WRKY70 positively regulate <i>SARD1</i> and <i>CBP60g</i> expression in plant immunity. Plant Signaling and Behavior, 2021, 16, 1932142.	2.4	15
11	Arabidopsis CALMODULIN-BINDING PROTEIN 60b plays dual roles in plant immunity. Plant Communications, 2021, 2, 100213.	7.7	25
12	TIR signal promotes interactions between lipase-like proteins and ADR1-L1 receptor and ADR1-L1 oligomerization. Plant Physiology, 2021, 187, 681-686.	4.8	57
13	Activation of TIR signalling boosts pattern-triggered immunity. Nature, 2021, 598, 500-503.	27.8	176
14	The glycosyltransferase UGT76B1 modulates <i>N</i> -hydroxy-pipecolic acid homeostasis and plant immunity. Plant Cell, 2021, 33, 735-749.	6.6	71
15	Redundant CAMTA Transcription Factors Negatively Regulate the Biosynthesis of Salicylic Acid and N-Hydroxypipecolic Acid by Modulating the Expression of SARD1 and CBP60g. Molecular Plant, 2020, 13, 144-156.	8.3	88
16	Biosynthesis and Regulation of Salicylic Acid and N-Hydroxypipecolic Acid in Plant Immunity. Molecular Plant, 2020, 13, 31-41.	8.3	98
17	Plant E3 ligases <scp>SNIPER</scp> 1 and <scp>SNIPER</scp> 2 broadly regulate the homeostasis of sensor <scp>NLR</scp> immune receptors. EMBO Journal, 2020, 39, e104915.	7.8	38
18	Diverse Roles of the Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Plant Immunity. Plant Cell, 2020, 32, 4002-4016.	6.6	87

#	Article	IF	CITATIONS
19	A structural view of salicylic acid perception. Nature Plants, 2020, 6, 1197-1198.	9.3	4
20	Knockout of SINPR1 enhances tomato plants resistance against Botrytis cinerea by modulating ROS homeostasis and JA / ET signaling pathways. Physiologia Plantarum, 2020, 170, 569-579.	5.2	9
21	MEKK2 inhibits activation of MAP kinases in Arabidopsis. Plant Journal, 2020, 103, 705-714.	5.7	16
22	Plant Immunity: Danger Perception and Signaling. Cell, 2020, 181, 978-989.	28.9	520
23	Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science, 2019, 365, 498-502.	12.6	273
24	The Emergence of a Mobile Signal for Systemic Acquired Resistance. Plant Cell, 2019, 31, 1414-1415.	6.6	14
25	Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 2019, 50, 29-36.	7.1	334
26	TGACGâ€BINDING FACTORs (TGAs) and TGAâ€interacting CCâ€ŧype glutaredoxins modulate hyponastic growth in <i>Arabidopsis thaliana</i> . New Phytologist, 2019, 221, 1906-1918.	7.3	43
27	Opposite Roles of Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Transcriptional Regulation of Plant Immunity. Cell, 2018, 173, 1454-1467.e15.	28.9	510
28	<pre><scp>TGACG</scp>â€<scp>BINDING FACTOR</scp>1 (<scp>TGA</scp>1) and <scp>TGA</scp>4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of <i>SYSTEMIC ACQUIRED RESISTANCE <scp>DEFICIENT</scp>1</i> (<i><scp>SARD</scp>1</i>) and <i><scp>CALMODULIN</scp>â€<scp>BINDING PROTEIN</scp> 60g</i> (<i><scp>CBP</scp>60g</i>). New Phytologist 2018, 217, 344,354</pre>	7.3	126
29	Differential requirement of BAK1 Câ€ŧerminal tail in development and immunity. Journal of Integrative Plant Biology, 2018, 60, 270-275.	8.5	12
30	Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity. Molecular Plant-Microbe Interactions, 2018, 31, 403-409.	2.6	246
31	Mitogen-activated protein kinase kinase 6 negatively regulates anthocyanin induction in Arabidopsis. Plant Signaling and Behavior, 2018, 13, e1526000.	2.4	11
32	MKK6 Functions in Two Parallel MAP Kinase Cascades in Immune Signaling. Plant Physiology, 2018, 178, 1284-1295.	4.8	33
33	Antagonistic interactions between two <scp>MAP</scp> kinase cascades in plant development and immune signaling. EMBO Reports, 2018, 19, .	4.5	103
34	MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cellular and Molecular Life Sciences, 2018, 75, 2981-2989.	5.4	105
35	Individual components of paired typical NLR immune receptors are regulated by distinct E3 ligases. Nature Plants, 2018, 4, 699-710.	9.3	43
36	Negative regulation of resistance proteinâ€mediated immunity by master transcription factors SARD1 and CBP60g. Journal of Integrative Plant Biology, 2018, 60, 1023-1027.	8.5	14

#	Article	IF	CITATIONS
37	Salicylic Acid: A Double-Edged Sword for Programed Cell Death in Plants. Frontiers in Plant Science, 2018, 9, 1133.	3.6	82
38	The <scp>NLR</scp> protein <scp>SUMM</scp> 2 senses the disruption of an immune signaling <scp>MAP</scp> kinase cascade via <scp>CRCK</scp> 3. EMBO Reports, 2017, 18, 292-302.	4.5	89
39	E3 ligase SAUL1 serves as a positive regulator of PAMPâ€ŧriggered immunity and its homeostasis is monitored by immune receptor SOC3. New Phytologist, 2017, 215, 1516-1532.	7.3	69
40	Structural basis for BIR1-mediated negative regulation of plant immunity. Cell Research, 2017, 27, 1521-1524.	12.0	41
41	Perception of Salicylic Acid in Physcomitrella patens. Frontiers in Plant Science, 2017, 8, 2145.	3.6	21
42	Mighty Dwarfs: Arabidopsis Autoimmune Mutants and Their Usages in Genetic Dissection of Plant Immunity. Frontiers in Plant Science, 2016, 7, 1717.	3.6	95
43	Two redundant receptor-like cytoplasmic kinases function downstream of pattern recognition receptors to regulate activation of SA biosynthesis in Arabidopsis. Plant Physiology, 2016, 171, pp.01954.2015.	4.8	44
44	Characterization of a Pipecolic Acid Biosynthesis Pathway Required for Systemic Acquired Resistance. Plant Cell, 2016, 28, 2603-2615.	6.6	121
45	Lossâ€ofâ€function of <i>Arabidopsis</i> receptorâ€like kinase <scp>BIR</scp> 1 activates cell death and defense responses mediated by <scp>BAK</scp> 1 and <scp>SOBIR</scp> 1. New Phytologist, 2016, 212, 637-645.	7.3	79
46	Suppressor Screens in Arabidopsis. Methods in Molecular Biology, 2016, 1363, 1-8.	0.9	7
47	Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. ELife, 2016, 5, e13568.	6.0	217
48	ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nature Communications, 2015, 6, 10159.	12.8	178
49	IBR5 Modulates Temperature-Dependent, R Protein CHS3-Mediated Defense Responses in Arabidopsis. PLoS Genetics, 2015, 11, e1005584.	3.5	17
50	Two N-Terminal Acetyltransferases Antagonistically Regulate the Stability of a Nod-Like Receptor in Arabidopsis. Plant Cell, 2015, 27, 1547-1562.	6.6	102
51	NLRs in plants. Current Opinion in Immunology, 2015, 32, 114-121.	5.5	146
52	Heterotrimeric G proteins interact with defense-related receptor-like kinases in Arabidopsis. Journal of Plant Physiology, 2015, 188, 44-48.	3.5	61
53	ER Quality Control Components UGGT and STT3a Are Required for Activation of Defense Responses in Bir1-1. PLoS ONE, 2015, 10, e0120245.	2.5	12
54	ldentification of additional MAP kinases activated upon PAMP treatment. Plant Signaling and Behavior, 2014, 9, e976155.	2.4	46

#	Article	IF	CITATIONS
55	NLR-Associating Transcription Factor bHLH84 and Its Paralogs Function Redundantly in Plant Immunity. PLoS Pathogens, 2014, 10, e1004312.	4.7	71
56	Splicing of Receptor-Like Kinase-Encoding SNC4 and CERK1 is Regulated by Two Conserved Splicing Factors that Are Required for Plant Immunity. Molecular Plant, 2014, 7, 1766-1775.	8.3	47
57	The MEKK1-MKK1/MKK2-MPK4 Kinase Cascade Negatively Regulates Immunity Mediated by a Mitogen-Activated Protein Kinase Kinase Kinase in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2225-2236.	6.6	219
58	Disruption of PAMP-Induced MAP Kinase Cascade by a Pseudomonas syringae Effector Activates Plant Immunity Mediated by the NB-LRR Protein SUMM2. Cell Host and Microbe, 2012, 11, 253-263.	11.0	321
59	Mutations in an Atypical TIR-NB-LRR-LIM Resistance Protein Confer Autoimmunity. Frontiers in Plant Science, 2011, 2, 71.	3.6	45
60	Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14694-14699.	7.1	205
61	Brush and Spray: A High-Throughput Systemic Acquired Resistance Assay Suitable for Large-Scale Genetic Screening Â. Plant Physiology, 2011, 157, 973-980.	4.8	56
62	Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18220-18225.	7.1	344
63	<i>Arabidopsis snc2-1D</i> Activates Receptor-Like Protein-Mediated Immunity Transduced through WRKY70. Plant Cell, 2010, 22, 3153-3163.	6.6	95
64	SRFR1 Negatively Regulates Plant NB-LRR Resistance Protein Accumulation to Prevent Autoimmunity. PLoS Pathogens, 2010, 6, e1001111.	4.7	112
65	Activation of Plant Immune Responses by a Gain-of-Function Mutation in an Atypical Receptor-Like Kinase Â. Plant Physiology, 2010, 153, 1771-1779.	4.8	120
66	Receptor-like Cytoplasmic Kinases Integrate Signaling from Multiple Plant Immune Receptors and Are Targeted by a Pseudomonas syringae Effector. Cell Host and Microbe, 2010, 7, 290-301.	11.0	713
67	Regulation of Cell Death and Innate Immunity by Two Receptor-like Kinases in Arabidopsis. Cell Host and Microbe, 2009, 6, 34-44.	11.0	328
68	MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Research, 2008, 18, 1190-1198.	12.0	382
69	Identification of Components in Disease-Resistance Signaling in <i>Arabidopsis</i> by Map-Based Cloning. , 2007, 354, 69-78.		11
70	Negative regulation of defense responses in Arabidopsis by twoNPR1paralogs. Plant Journal, 2006, 48, 647-656.	5.7	206
71	Knockout Analysis of Arabidopsis Transcription Factors TGA2, TGA5, and TGA6 Reveals Their Redundant and Essential Roles in Systemic Acquired Resistance. Plant Cell, 2003, 15, 2647-2653.	6.6	444
72	A Gain-of-Function Mutation in a Plant Disease Resistance Gene Leads to Constitutive Activation of Downstream Signal Transduction Pathways in suppressor of npr1-1, constitutive 1. Plant Cell, 2003, 15, 2636-2646.	6.6	446

#	ARTICLE	IF	CITATIONS
73	Activation of an EDS1-Mediated R-Gene Pathway in the snc1 Mutant Leads to Constitutive, NPR1-Independent Pathogen Resistance. Molecular Plant-Microbe Interactions, 2001, 14, 1131-1139.	2.6	252
74	Identification and Cloning of a Negative Regulator of Systemic Acquired Resistance, SNI1, through a Screen for Suppressors of npr1-1. Cell, 1999, 98, 329-339.	28.9	240
75	High transformation efficiency in Arabidopsis using extremely low Agrobacterium inoculum. F1000Research, 0, 9, 356.	1.6	1
76	High transformation efficiency in Arabidopsis using extremely low Agrobacterium inoculum. F1000Research, 0, 9, 356.	1.6	0