Scott Ayton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4061397/publications.pdf

Version: 2024-02-01

53794 46799 8,859 102 45 citations h-index papers

g-index 106 106 106 10613 docs citations times ranked citing authors all docs

89

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	eglock 107	∏ 50 742 <mark>™</mark>
2	Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nature Medicine, 2012, 18, 291-295.	30.7	491
3	Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Molecular Psychiatry, 2017, 22, 1520-1530.	7.9	449
4	Overcoming the Blood–Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Advanced Materials, 2018, 30, e1801362.	21.0	415
5	Current state of Alzheimer's fluid biomarkers. Acta Neuropathologica, 2018, 136, 821-853.	7.7	370
6	A delicate balance: Iron metabolism and diseases of the brain. Frontiers in Aging Neuroscience, 2013, 5, 34.	3.4	314
7	Metallostasis in Alzheimer's disease. Free Radical Biology and Medicine, 2013, 62, 76-89.	2.9	297
8	Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochemistry International, 2017, 104, 34-48.	3.8	260
9	Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE. Nature Communications, 2015, 6, 6760.	12.8	240
10	Ferroptosis and its potential role in the physiopathology of Parkinson's Disease. Progress in Neurobiology, 2021, 196, 101890.	5.7	220
11	Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Annals of Neurology, 2013, 73, 554-559.	5.3	218
12	Cerebral quantitative susceptibility mapping predicts amyloid- \hat{l}^2 -related cognitive decline. Brain, 2017, 140, 2112-2119.	7.6	213
13	Iron and Alzheimer's Disease: An Update on Emerging Mechanisms. Journal of Alzheimer's Disease, 2018, 64, S379-S395.	2.6	205
14	Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Molecular Psychiatry, 2020, 25, 2932-2941.	7.9	202
15	Tau protein: Relevance to Parkinson's disease. International Journal of Biochemistry and Cell Biology, 2010, 42, 1775-1778.	2.8	180
16	The hypoxia imaging agent Cull(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease. Journal of Experimental Medicine, 2012, 209, 837-854.	8.5	151
17	The essential elements of Alzheimer's disease. Journal of Biological Chemistry, 2021, 296, 100105.	3.4	140
18	Nigral Iron Elevation Is an Invariable Feature of Parkinson's Disease and Is a Sufficient Cause of Neurodegeneration. BioMed Research International, 2014, 2014, 1-9.	1.9	126

#	Article	IF	Citations
19	GSK-3 in Neurodegenerative Diseases. International Journal of Alzheimer's Disease, 2011, 2011, 1-9.	2.0	119
20	Motor and cognitive deficits in aged tau knockout mice in two background strains. Molecular Neurodegeneration, 2014, 9, 29.	10.8	117
21	Parkinson's Disease Iron Deposition Caused by Nitric Oxide-Induced Loss of \hat{I}^2 -Amyloid Precursor Protein. Journal of Neuroscience, 2015, 35, 3591-3597.	3.6	109
22	Biometals and Their Therapeutic Implications in Alzheimer's Disease. Neurotherapeutics, 2015, 12, 109-120.	4.4	109
23	An iron–dopamine index predicts risk of parkinsonian neurodegeneration in the substantia nigra pars compacta. Chemical Science, 2014, 5, 2160-2169.	7.4	98
24	Cu ^{II} (atsm) inhibits ferroptosis: Implications for treatment of neurodegenerative disease. British Journal of Pharmacology, 2020, 177, 656-667.	5.4	92
25	Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. Journal of Neurochemistry, 2021, 159, 804-825.	3.9	89
26	Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion. Signal Transduction and Targeted Therapy, 2022, 7, 59.	17.1	88
27	Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2+ve breast cancer metastasis. Breast Cancer Research, 2019, 21, 94.	5.0	87
28	The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease. Acta Neuropathologica Communications, 2017, 5, 53.	5.2	77
29	Clioquinol rescues Parkinsonism and dementia phenotypes of the tau knockout mouse. Neurobiology of Disease, 2015, 81, 168-175.	4.4	73
30	Typeâ€1 interferons contribute to the neuroinflammatory response and disease progression of the MPTP mouse model of Parkinson's disease. Glia, 2016, 64, 1590-1604.	4.9	71
31	Treating Alzheimer's disease by targeting iron. British Journal of Pharmacology, 2019, 176, 3622-3635.	5.4	71
32	Regional brain iron associated with deterioration in Alzheimer's disease: A large cohort study and theoretical significance. Alzheimer's and Dementia, 2021, 17, 1244-1256.	0.8	71
33	Cellular Senescence and Iron Dyshomeostasis in Alzheimer's Disease. Pharmaceuticals, 2019, 12, 93.	3.8	68
34	Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Molecular Psychiatry, 2017, 22, 396-406.	7.9	66
35	Evidence that iron accelerates Alzheimer's pathology: a CSF biomarker study. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 456-460.	1.9	66
36	The Complex Role of Apolipoprotein E in Alzheimer's Disease: an Overview and Update. Journal of Molecular Neuroscience, 2016, 60, 325-335.	2.3	64

#	Article	IF	CITATIONS
37	S-sulfocysteine/NMDA receptor–dependent signaling underlies neurodegeneration in molybdenum cofactor deficiency. Journal of Clinical Investigation, 2017, 127, 4365-4378.	8.2	62
38	Association of Cerebrospinal Fluid Ferritin Level With Preclinical Cognitive Decline in <i>APOE</i> -l μ 4 Carriers. JAMA Neurology, 2017, 74, 122.	9.0	61
39	Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson's disease. Molecular Neurodegeneration, 2014, 9, 27.	10.8	60
40	Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging. Cell Metabolism, 2022, 34, 408-423.e8.	16.2	58
41	PBT2 Reduces Toxicity in a C. elegans Model of polyQ Aggregation and Extends Lifespan, Reduces Striatal Atrophy and Improves Motor Performance in the R6/2 Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2012, 1, 211-219.	1.9	57
42	Ferroptosis and NRF2: an emerging battlefield in the neurodegeneration of Alzheimer's disease. Essays in Biochemistry, 2021, 65, 925-940.	4.7	57
43	Marked Age-Related Changes in Brain Iron Homeostasis in Amyloid Protein Precursor Knockout Mice. Neurotherapeutics, 2018, 15, 1055-1062.	4.4	53
44	Amyloidogenic processing of Alzheimer's disease β-amyloid precursor protein induces cellular iron retention. Molecular Psychiatry, 2020, 25, 1958-1966.	7.9	52
45	Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis. , 2022, 19, 913-924.		51
46	Enduring Elevations of Hippocampal Amyloid Precursor Protein and Iron Are Features of \hat{l}^2 -Amyloid Toxicity and Are Mediated by Tau. Neurotherapeutics, 2015, 12, 862-873.	4.4	50
47	Ceruloplasmin and \hat{l}^2 -amyloid precursor protein confer neuroprotection in traumatic brain injury and lower neuronal iron. Free Radical Biology and Medicine, 2014, 69, 331-337.	2.9	49
48	Elevated plasma ferritin in elderly individuals with high neocortical amyloid- \hat{l}^2 load. Molecular Psychiatry, 2018, 23, 1807-1812.	7.9	49
49	Cerebrospinal fluid ferritin levels predict brain hypometabolism in people with underlying \hat{l}^2 -amyloid pathology. Neurobiology of Disease, 2019, 124, 335-339.	4.4	39
50	Characterization of Selenium Compounds for Anti-ferroptotic Activity in Neuronal Cells and After Cerebral Ischemia–Reperfusion Injury. Neurotherapeutics, 2021, 18, 2682-2691.	4.4	39
51	Apolipoprotein E potently inhibits ferroptosis by blocking ferritinophagy. Molecular Psychiatry, 2022,	7.9	38
52	α-Synuclein Transgenic Mice Reveal Compensatory Increases in Parkinson's Disease-Associated Proteins DJ-1 and Parkin and Have Enhanced α-Synuclein and PINK1 Levels After Rotenone Treatment. Journal of Molecular Neuroscience, 2010, 42, 243-254.	2.3	37
53	Transferrin protects against Parkinsonian neurotoxicity and is deficient in Parkinson's substantia nigra. Signal Transduction and Targeted Therapy, 2016, 1, 16015.	17.1	36
54	Serotonergic markers in Parkinson's disease and levodopaâ€induced dyskinesias. Movement Disorders, 2015, 30, 796-804.	3.9	32

#	Article	IF	CITATIONS
55	Selective ferroptosis vulnerability due to familial Alzheimer's disease presenilin mutations. Cell Death and Differentiation, 2022, 29, 2123-2136.	11.2	32
56	Fibrillar \hat{l} ±-synuclein toxicity depends on functional lysosomes. Journal of Biological Chemistry, 2020, 295, 17497-17513.	3.4	30
57	Association of metals with the risk and clinical characteristics of Parkinson's disease. Parkinsonism and Related Disorders, 2018, 55, 117-121.	2.2	29
58	Increased Ndfip1 in the Substantia Nigra of Parkinsonian Brains Is Associated with Elevated Iron Levels. PLoS ONE, 2014, 9, e87119.	2.5	28
59	β-amyloid: The known unknowns. Ageing Research Reviews, 2021, 65, 101212.	10.9	27
60	Copper and lipid metabolism: A reciprocal relationship. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129979.	2.4	26
61	The effect of dopamine on MPTP-induced rotarod disability. Neuroscience Letters, 2013, 543, 105-109.	2.1	25
62	Acute phase markers in CSF reveal inflammatory changes in Alzheimer's disease that intersect with pathology, APOE Îμ4, sex and age. Progress in Neurobiology, 2021, 198, 101904.	5.7	25
63	Zinc drives vasorelaxation by acting in sensory nerves, endothelium and smooth muscle. Nature Communications, 2021, 12, 3296.	12.8	25
64	A comparison of ceruloplasmin to biological polyanions in promoting the oxidation of Fe2+ under physiologically relevant conditions. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3299-3310.	2.4	24
65	Cerebrospinal fluid ceruloplasmin levels predict cognitive decline and brain atrophy in people with underlying \hat{l}^2 -amyloid pathology. Neurobiology of Disease, 2020, 139, 104810.	4.4	24
66	Evidence of a Cardiovascular Function for Microtubule-Associated Protein Tau. Journal of Alzheimer's Disease, 2017, 56, 849-860.	2.6	23
67	Brain volume loss due to donanemab. European Journal of Neurology, 2021, 28, e67-e68.	3.3	20
68	Iron accumulation in skeletal muscles of old mice is associated with impaired regeneration after ischaemia–reperfusion damage. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 476-492.	7.3	17
69	Unblinded by the light: amyloidâ€related imaging abnormalities in Alzheimer's clinical trials. European Journal of Neurology, 2021, 28, e1.	3.3	16
70	Brain Zinc Deficiency Exacerbates Cognitive Decline in the R6/1 Model of Huntington's Disease. Neurotherapeutics, 2020, 17, 243-251.	4.4	15
71	Amine oxidase activity of \hat{l}^2 -amyloid precursor protein modulates systemic and local catecholamine levels. Molecular Psychiatry, 2013, 18, 245-254.	7.9	14
72	More evidence is needed. Iron, incident cognitive decline and dementia: a systematic review. Therapeutic Advances in Chronic Disease, 2018, 9, 241-256.	2.5	14

#	Article	IF	CITATIONS
73	Nanoscale Imaging Reveals Big Role for Iron in Alzheimer's Disease. Cell Chemical Biology, 2017, 24, 1192-1194.	5.2	13
74	Parkinson's disease prevalence and the association with rurality and agricultural determinants. Parkinsonism and Related Disorders, 2019, 61, 198-202.	2.2	13
7 5	Serotonergic lesions of the dorsal hippocampus differentially modulate locomotor hyperactivity induced by drugs of abuse in rats: implications for schizophrenia. Psychopharmacology, 2009, 206, 665-676.	3.1	10
76	Deferiprone to delay dementia (the 3D trial). Alzheimer's and Dementia, 2020, 16, e044107.	0.8	8
77	The Neuroinflammatory Acute Phase Response in Parkinsonianâ€Related Disorders. Movement Disorders, 2022, 37, 993-1003.	3.9	8
78	Mice overexpressing hepcidin suggest ferroportin does not play a major role in Mn homeostasis. Metallomics, 2019, 11, 959-967.	2.4	7
79	The AÂ-Induced NFAT Apoptotic Pathway Is Also Activated by GSK-3 Inhibition: Implications for Alzheimer Therapeutics. Journal of Neuroscience, 2012, 32, 9454-9456.	3.6	6
80	Axonal dispatch of iron in neuronal signaling. Nature Chemical Biology, 2019, 15, 1135-1136.	8.0	6
81	Restricted Effect of Cerebral Microbleeds on Regional Magnetic Susceptibility. Journal of Alzheimer's Disease, 2020, 76, 571-577.	2.6	6
82	Ventricular enlargement caused by aducanumab. Nature Reviews Neurology, 2022, 18, 383-384.	10.1	6
83	Iron overload and impaired iron handling contribute to the dystrophic pathology in models of Duchenne muscular dystrophy. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1541-1553.	7.3	5
84	A normalisation framework for quantitative brain imaging; application to quantitative susceptibility mapping. , 2017, , .		3
85	Decreasing iron neurotoxicity in pantothenate kinase-associated neurodegeneration. Lancet Neurology, The, 2019, 18, 616-617.	10.2	3
86	[P1–444]: QUANTITATIVE SUSCEPTIBILITY MAPPING OF THE HIPPOCAMPUS PREDICTS HIPPOCAMPAL ATROPH'IN Aβ+ ELDERLY CONTROLS AND ALZHEIMER's DISEASE PATIENTS. Alzheimer's and Dementia, 2017, 13, P454.	Y _{0.8}	2
87	Targeting Transition Metals forÂNeuroprotection inÂAlzheimer's Disease. , 2017, , 193-215.		2
88	Disruption of Hfe leads to skeletal muscle iron loading and reduction of hemoproteins involved in oxidative metabolism in a mouse model of hereditary hemochromatosis. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130082.	2.4	2
89	P4-253: EVIDENCE FOR APOE PROTECTING AGAINST BRAIN IRON OVERLOAD. , 2014, 10, P878-P878.		1
90	A Framework to Objectively Identify Reference Regions for Normalizing Quantitative Imaging. Lecture Notes in Computer Science, 2018, , 65-72.	1.3	1

#	Article	IF	CITATIONS
91	Zn-DTSM, A Zinc Ionophore with Therapeutic Potential for Acrodermatitis Enteropathica?. Nutrients, 2019, 11, 206.	4.1	1
92	Iron reduces the propagation of pathological αâ€synuclein. Journal of Neurochemistry, 2021, 159, 414-416.	3.9	1
93	Letter to the Editor. Hyperglycolysis as a common cause for elevated lactate in subarachnoid hemorrhage. Journal of Neurosurgery, 2020, , 1-2.	1.6	1
94	Does the FDAâ€approved Alzheimer drug aducanumab have a place in the Australian pharmacopoeia?. Medical Journal of Australia, 2022, , .	1.7	1
95	P4-369: REVISITING THE ALZHEIMER'S AND PARKINSONISM PHENOTYPES OF TAU KO MICE: POTENTIAL GENETIC BACKGROUND EFFECT., 2014, 10, P924-P924.		o
96	O5â€05â€01: CSF Ferritin Determines the Risk of Cognitive Decline in Preâ€Clinical <i>APOE</i> ‣4 Carriers. Alzheimer's and Dementia, 2016, 12, P387.	0.8	0
97	[P3â€"153]: THE INFLUENCE OF AMYLOIDâ€B PRECURSOR PROTEIN PROTEOLYTIC PROCESSING ON NEURONAL IRON HOMEOSTASIS. Alzheimer's and Dementia, 2017, 13, P993.	0.8	o
98	P2â€473: BRAIN IRON IS A COâ€PATHOLOGY THAT IS STRONGLY ASSOCIATED WITH COGNITIVE DECLINE IN PEOWITH ALZHEIMER'S PATHOLOGY. Alzheimer's and Dementia, 2018, 14, P904.	PLE 0.8	0
99	Acute phase markers in CSF reveal inflammatory changes in Alzheimer's disease that are impacted by APOE ε4, sex and age but not pathology. Alzheimer's and Dementia, 2020, 16, e040745.	0.8	o
100	Limited cerebral microbleeds effect on regional magnetic susceptibility measured by MRI. Alzheimer's and Dementia, 2020, 16, e044125.	0.8	0
101	Zinc in Alzheimer's and Parkinson's Diseases. , 2013, , 2433-2441.		O
102	Metal-Protein Attenuating Compounds in Neurodegenerative Diseases. , 2016, , .		0