List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4060956/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Aberrant Cellular Glycosylation May Increase the Ability of Influenza Viruses to Escape Host Immune Responses through Modification of the Viral Glycome. MBio, 2022, 13, e0298321.	4.1	4
2	Immune-mediated attenuation of influenza illness after infection: opportunities and challenges. Lancet Microbe, The, 2021, 2, e715-e725.	7.3	29
3	Repeated vaccination against matched H3N2 influenza virus gives less protection than single vaccination in ferrets. Npj Vaccines, 2019, 4, 28.	6.0	19
4	Influenza virus N-linked glycosylation and innate immunity. Bioscience Reports, 2019, 39, .	2.4	45
5	Extensive T cell cross-reactivity between diverse seasonal influenza strains in the ferret model. Scientific Reports, 2018, 8, 6112.	3.3	23
6	Longevity of adenovirus vector immunity in mice and its implications for vaccine efficacy. Vaccine, 2018, 36, 6744-6751.	3.8	15
7	Influence of Immune Priming and Egg Adaptation in the Vaccine on Antibody Responses to Circulating A(H1N1)pdm09 Viruses After Influenza Vaccination in Adults. Journal of Infectious Diseases, 2018, 218, 1571-1581.	4.0	25
8	Biosensor-based epitope mapping of antibodies targeting the hemagglutinin and neuraminidase of influenza A virus. Journal of Immunological Methods, 2018, 461, 23-29.	1.4	9
9	Evolution and Virulence of Influenza A Virus Protein PB1-F2. International Journal of Molecular Sciences, 2018, 19, 96.	4.1	48
10	Virulent PB1-F2 residues: effects on fitness of H1N1 influenza A virus in mice and changes during evolution of human influenza A viruses. Scientific Reports, 2018, 8, 7474.	3.3	10
11	A Bovine Adenoviral Vector-Based H5N1 Influenza -Vaccine Provides Enhanced Immunogenicity and Protection at a Significantly Low Dose. Molecular Therapy - Methods and Clinical Development, 2018, 10, 210-222.	4.1	14
12	Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Scientific Reports, 2017, 7, 40360.	3.3	110
13	Stockpiled pre-pandemic H5N1 influenza virus vaccines with ASO3 adjuvant provide cross-protection from H5N2 clade 2.3.4.4 virus challenge in ferrets. Virology, 2017, 508, 164-169.	2.4	17
14	An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody protects mice from morbidity without interfering with the development of protective immunity to subsequent homologous challenge. Virology, 2017, 511, 214-221.	2.4	14
15	Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies. Journal of Virology, 2017, 91, .	3.4	25
16	Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses. PLoS ONE, 2017, 12, e0186244.	2.5	15
17	RIG-I ligand enhances the immunogenicity of recombinant H7HA protein. Cellular Immunology, 2016, 304-305, 55-58.	3.0	6
18	An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody with prophylactic and therapeutic activity inÂvivo. Antiviral Research, 2016, 135, 48-55.	4.1	31

#	Article	IF	CITATIONS
19	Non-neutralizing antibodies induced by seasonal influenza vaccine prevent, not exacerbate A(H1N1)pdm09 disease. Scientific Reports, 2016, 6, 37341.	3.3	22
20	Glycosylation changes in the globular head of H3N2 influenza hemagglutinin modulate receptor binding without affecting virus virulence. Scientific Reports, 2016, 6, 36216.	3.3	43
21	Supplementation of H1N1pdm09 split vaccine with heterologous tandem repeat M2e5x virus-like particles confers improved cross-protection in ferrets. Vaccine, 2016, 34, 466-473.	3.8	16
22	Antibody-Dependent Cell-Mediated Cytotoxicity to Hemagglutinin of Influenza A Viruses After Influenza Vaccination in Humans. Open Forum Infectious Diseases, 2016, 3, ofw102.	0.9	25
23	A highly immunogenic vaccine against A/H7N9 influenza virus. Vaccine, 2016, 34, 744-749.	3.8	12
24	Peripheral Leukocyte Migration in Ferrets in Response to Infection with Seasonal Influenza Virus. PLoS ONE, 2016, 11, e0157903.	2.5	17
25	Diverse antigenic site targeting of influenza hemagglutinin in the murine antibody recall response to A(H1N1)pdm09 virus. Virology, 2015, 485, 252-262.	2.4	15
26	Emergence of Highly Pathogenic Avian Influenza A(H5N1) Virus PB1-F2 Variants and Their Virulence in BALB/c Mice. Journal of Virology, 2015, 89, 5835-5846.	3.4	29
27	An MHC class I immune evasion gene of Marek× ³ s disease virus. Virology, 2015, 475, 88-95.	2.4	17
28	Influenza Vaccination Accelerates Recovery of Ferrets from Lymphopenia. PLoS ONE, 2014, 9, e100926.	2.5	26
29	Recombinant influenza H7 hemagglutinins induce lower neutralizing antibody titers in mice than do seasonal hemagglutinins. Influenza and Other Respiratory Viruses, 2014, 8, 628-635.	3.4	25
30	Diversity of the murine antibody response targeting influenza A(H1N1pdm09) hemagglutinin. Virology, 2014, 458-459, 114-124.	2.4	9
31	Molecular Determinants of Influenza Virus Pathogenesis in Mice. Current Topics in Microbiology and Immunology, 2014, 385, 243-274.	1.1	48
32	LABEL: Fast and Accurate Lineage Assignment with Assessment of H5N1 and H9N2 Influenza A Hemagglutinins. PLoS ONE, 2014, 9, e86921.	2.5	31
33	Non-Avian Animal Reservoirs Present a Source of Influenza A PB1-F2 Proteins with Novel Virulence-Enhancing Markers. PLoS ONE, 2014, 9, e111603.	2.5	11
34	Endoplasmic reticulum aminopeptidase-1 alleles associated with increased risk of ankylosing spondylitis reduce HLA-B27 mediated presentation of multiple antigens. Autoimmunity, 2013, 46, 497-508.	2.6	56
35	Evolution of highly pathogenic avian influenza (H5N1) virus populations in Vietnam between 2007 and 2010. Virology, 2012, 432, 405-416.	2.4	55
36	The 2009 Pandemic Influenza Virus: Where Did It Come from, Where Is It Now, and Where Is It Going?. Current Topics in Microbiology and Immunology, 2012, 370, 241-257.	1.1	31

#	Article	IF	CITATIONS
37	Mice completely lacking immunoproteasomes show major changes in antigen presentation. Nature Immunology, 2012, 13, 129-135.	14.5	222
38	A distinct lineage of influenza A virus from bats. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4269-4274.	7.1	899
39	Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nature Structural and Molecular Biology, 2011, 18, 604-613.	8.2	176
40	Virus-Like Particle Vaccine Containing Hemagglutinin Confers Protection against 2009 H1N1 Pandemic Influenza. Vaccine Journal, 2011, 18, 2010-2017.	3.1	29
41	Cutting Edge: Coding Single Nucleotide Polymorphisms of Endoplasmic Reticulum Aminopeptidase 1 Can Affect Antigenic Peptide Generation In Vitro by Influencing Basic Enzymatic Properties of the Enzyme. Journal of Immunology, 2011, 186, 1909-1913.	0.8	122
42	The Virulence of 1997 H5N1 Influenza Viruses in the Mouse Model Is Increased by Correcting a Defect in Their NS1 Proteins. Journal of Virology, 2011, 85, 7048-7058.	3.4	71
43	Antiviral Activity and Increased Host Defense against Influenza Infection Elicited by the Human Cathelicidin LL-37. PLoS ONE, 2011, 6, e25333.	2.5	295
44	Identification of ⁸¹ LGxGxxIxW ⁸⁹ and ¹⁷¹ EDRW ¹⁷⁴ Domains from Human Immunodeficiency Virus Type 1 Vif That Regulate APOBEC3G and APOBEC3F Neutralizing Activity. Journal of Virology, 2010, 84, 5741-5750.	3.4	49
45	Identification of a Critical T(Q/D/E)x ₅ ADx ₂ (I/L) Motif from Primate Lentivirus Vif Proteins That Regulate APOBEC3G and APOBEC3F Neutralizing Activity. Journal of Virology, 2010, 84, 8561-8570.	3.4	33
46	Characterizing the Specificity and Cooperation of Aminopeptidases in the Cytosol and Endoplasmic Reticulum during MHC Class I Antigen Presentation. Journal of Immunology, 2010, 184, 4725-4732.	0.8	13
47	Placental Leucine Aminopeptidase Efficiently Generates Mature Antigenic Peptides In Vitro but in Patterns Distinct from Endoplasmic Reticulum Aminopeptidase 1. Journal of Immunology, 2010, 185, 1584-1592.	0.8	38
48	Identification of a Novel WxSLVK Motif in the N Terminus of Human Immunodeficiency Virus and Simian Immunodeficiency Virus Vif That Is Critical for APOBEC3G and APOBEC3F Neutralization. Journal of Virology, 2009, 83, 8544-8552.	3.4	84
49	The Specificity of Trimming of MHC Class I-Presented Peptides in the Endoplasmic Reticulum. Journal of Immunology, 2009, 183, 5526-5536.	0.8	90
50	Analysis of the Role of Tripeptidyl Peptidase II in MHC Class I Antigen Presentation In Vivo. Journal of Immunology, 2009, 183, 6069-6077.	0.8	32
51	Puromycin-Sensitive Aminopeptidase Limits MHC Class I Presentation in Dendritic Cells but Does Not Affect CD8 T Cell Responses during Viral Infections. Journal of Immunology, 2008, 180, 1704-1712.	0.8	31
52	Analysis of the Role of Bleomycin Hydrolase in Antigen Presentation and the Generation of CD8 T Cell Responses. Journal of Immunology, 2007, 178, 6923-6930.	0.8	36
53	Tripeptidyl Peptidase II Is the Major Peptidase Needed to Trim Long Antigenic Precursors, but Is Not Required for Most MHC Class I Antigen Presentation. Journal of Immunology, 2006, 177, 1434-1443.	0.8	84
54	Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9202-9207.	7.1	171

#	Article	IF	CITATIONS
55	Leucine Aminopeptidase Is Not Essential for Trimming Peptides in the Cytosol or Generating Epitopes for MHC Class I Antigen Presentation. Journal of Immunology, 2005, 175, 6605-6614.	0.8	46
56	A Mutant Cell with a Novel Defect in MHC Class I Quality Control. Journal of Immunology, 2005, 174, 6839-6846.	0.8	11
57	Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nature Immunology, 2004, 5, 670-677.	14.5	229
58	The Cytosolic Endopeptidase, Thimet Oligopeptidase, Destroys Antigenic Peptides and Limits the Extent of MHC Class I Antigen Presentation. Immunity, 2003, 18, 429-440.	14.3	137
59	Protein degradation and the generation of MHC class I-presented peptides. Advances in Immunology, 2002, 80, 1-70.	2.2	300
60	An IFN-γ–induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class l–presented peptides. Nature Immunology, 2002, 3, 1169-1176.	14.5	486
61	The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nature Immunology, 2002, 3, 1177-1184.	14.5	448
62	Proteolysis and class I major histocompatibility complex antigen presentation. Immunological Reviews, 1999, 172, 49-66.	6.0	208
63	Class II antigen processing defects in twoH2 dmouse cell lines are caused by point mutations in theH2-DMagene. European Journal of Immunology, 1999, 29, 905-911.	2.9	11
64	ANTIGEN PROCESSING AND PRESENTATION BY THE CLASS I MAJOR HISTOCOMPATIBILITY COMPLEX. Annual Review of Immunology, 1996, 14, 369-396.	21.8	559
65	Immune evasion strategies of the herpesviruses. Chemistry and Biology, 1996, 3, 331-335.	6.0	10
66	Herpes simplex virus turns off the TAP to evade host immunity. Nature, 1995, 375, 411-415.	27.8	837
67	Delivery of a foreign gene to sympathetic preganglionic neurons using recombinant herpes simplex virus. Neuroscience, 1995, 66, 737-750.	2.3	12
68	A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell, 1994, 77, 525-535.	28.9	570
69	Direct Contact with Herpes Simplex Virus-Infected Cells Results in Inhibition of Lymphokine-Activated Killer Cells because of Cell-to-Cell Spread of Virus. Journal of Infectious Diseases, 1993, 168, 1127-1132.	4.0	41
70	Evaluation of a subunit vaccine for bovine adenovirus type 3. American Journal of Veterinary Research, 1992, 53, 180-3.	0.6	5