
Paola Oliveri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4060733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrastructural and molecular analysis of the origin and differentiation of cells mediating brittle star skeletal regeneration. BMC Biology, 2021, 19, 9.	3.8	17
2	Post-metamorphic skeletal growth in the sea urchin Paracentrotus lividus and implications for body plan evolution. EvoDevo, 2021, 12, 3.	3.2	18
3	FGF signalling plays similar roles in development and regeneration of the skeleton in the brittle star <i>Amphiura filiformis</i> . Development (Cambridge), 2021, 148, .	2.5	18
4	The Development and Neuronal Complexity of Bipinnaria Larvae of the Sea Star <i>Asterias rubens</i> . Integrative and Comparative Biology, 2021, 61, 337-351.	2.0	8
5	Extracellular matrix gene expression during arm regeneration in Amphiura filiformis. Cell and Tissue Research, 2020, 381, 411-426.	2.9	3
6	Unravelling the evolutionary history of kisspeptin. ELife, 2020, 9, .	6.0	0
7	Evolutionary transition between invertebrates and vertebrates via methylation reprogramming in embryogenesis. National Science Review, 2019, 6, 993-1003.	9.5	58
8	A conceptual history of the "regulatory genome― From Theodor Boveri to Eric Davidson. Marine Genomics, 2019, 44, 24-31.	1.1	3
9	Fundamental aspects of arm repair phase in two echinoderm models. Developmental Biology, 2018, 433, 297-309.	2.0	21
10	Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution. Genome Biology, 2018, 19, 26.	8.8	30
11	New Neuronal Subtypes With a "Pre-Pancreatic―Signature in the Sea Urchin Stongylocentrotus purpuratus. Frontiers in Endocrinology, 2018, 9, 650.	3.5	24
12	Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple―Nervous System. Frontiers in Endocrinology, 2018, 9, 628.	3.5	27
13	Maristem—Stem Cells of Marine/Aquatic Invertebrates: From Basic Research to Innovative Applications. Sustainability, 2018, 10, 526.	3.2	9
14	Regeneration in Stellate Echinoderms: Crinoidea, Asteroidea and Ophiuroidea. Results and Problems in Cell Differentiation, 2018, 65, 285-320.	0.7	29
15	Sex and Pubertal Differences in the Type 1 Interferon Pathway Associate With Both X Chromosome Number and Serum Sex Hormone Concentration. Frontiers in Immunology, 2018, 9, 3167.	4.8	87
16	Non-directional Photoreceptors in the Pluteus of Strongylocentrotus purpuratus. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	7
17	Skeletal regeneration in the brittle star Amphiura filiformis. Frontiers in Zoology, 2016, 13, 18.	2.0	38
18	Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks. EvoDevo, 2016, 7, 2.	3.2	44

PAOLA OLIVERI

#	Article	IF	CITATIONS
19	Discovery of sea urchin NGFFFamide receptor unites a bilaterian neuropeptide family. Open Biology, 2015, 5, 150030.	3.6	42
20	Evolution of lineage-specific functions in ancient <i>cis</i> -regulatory modules. Open Biology, 2015, 5, 150079.	3.6	6
21	Molecular characterization of the apical organ of the anthozoan Nematostella vectensis. Developmental Biology, 2015, 398, 120-133.	2.0	52
22	NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1386-1391.	7.1	49
23	A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning. Nature Communications, 2015, 6, 6243.	12.8	57
24	The Cryptochrome/Photolyase Family in aquatic organisms. Marine Genomics, 2014, 14, 23-37.	1.1	81
25	Phylogenomic analysis of echinoderm class relationships supports Asterozoa. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140479.	2.6	102
26	Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis. Gene Expression Patterns, 2013, 13, 464-472.	0.8	50
27	Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors. EvoDevo, 2013, 4, 33.	3.2	62
28	An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes. Developmental Biology, 2013, 382, 280-292.	2.0	69
29	The cis-regulatory system of the tbrain gene: Alternative use of multiple modules to promote skeletogenic expression in the sea urchin embryo. Developmental Biology, 2009, 335, 428-441.	2.0	29
30	Direct multiplexed measurement of gene expression with color-coded probe pairs. Nature Biotechnology, 2008, 26, 317-325.	17.5	1,832
31	A protocol for unraveling gene regulatory networks. Nature Protocols, 2008, 3, 1876-1887.	12.0	38
32	Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development. Developmental Biology, 2008, 314, 276-286.	2.0	101
33	Global regulatory logic for specification of an embryonic cell lineage. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5955-5962.	7.1	354
34	A missing link in the sea urchin embryo gene regulatory network: <i>hesC</i> and the double-negative specification of micromeres. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12383-12388.	7.1	132
35	DEVELOPMENT: Built to Run, Not Fail. Science, 2007, 315, 1510-1511.	12.6	43
36	The Genome of the Sea Urchin <i>Strongylocentrotus purpuratus</i> . Science, 2006, 314, 941-952.	12.6	1,018

PAOLA OLIVERI

#	Article	IF	CITATIONS
37	Sea urchin Forkhead gene family: Phylogeny and embryonic expression. Developmental Biology, 2006, 300, 49-62.	2.0	192
38	High regulatory gene use in sea urchin embryogenesis: Implications for bilaterian development and evolution. Developmental Biology, 2006, 300, 27-34.	2.0	57
39	Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo. Development (Cambridge), 2006, 133, 4173-4181.	2.5	116
40	Environmental Controls on the Taphonomy of Phosphatized Animals and Animal Embryos from the Neoproterozoic Doushantuo Formation, Southwest China. Palaios, 2006, 21, 3-14.	1.3	67
41	Precambrian animal life: Taphonomy of phosphatized metazoan embryos from southwest China. Lethaia, 2005, 38, 101-109.	1.4	31
42	Response to Comment on "Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian". Science, 2004, 306, 1291b-1291b.	12.6	35
43	cis-Regulatory activity of randomly chosen genomic fragments from the sea urchin. Gene Expression Patterns, 2004, 4, 205-213.	0.8	27
44	Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian. Science, 2004, 305, 218-222.	12.6	259
45	Gene regulatory network controlling embryonic specification in the sea urchin. Current Opinion in Genetics and Development, 2004, 14, 351-360.	3.3	140
46	Expression of an NK2 homeodomain gene in the apical ectoderm defines a new territory in the early sea urchin embryo. Developmental Biology, 2004, 269, 152-164.	2.0	71
47	Gene Regulatory Network Analysis in Sea Urchin Embryos. Methods in Cell Biology, 2004, 74, 775-794.	1.1	26
48	Activation of pmar1 controls specification of micromeres in the sea urchin embryo. Developmental Biology, 2003, 258, 32-43.	2.0	128
49	Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo. Development (Cambridge), 2003, 130, 2917-2928.	2.5	170
50	Quantitative imaging of cis-regulatory reporters in living embryos. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12895-12900.	7.1	17
51	A Genomic Regulatory Network for Development. Science, 2002, 295, 1669-1678.	12.6	1,399
52	A Regulatory Gene Network That Directs Micromere Specification in the Sea Urchin Embryo. Developmental Biology, 2002, 246, 209-228.	2.0	234
53	A Provisional Regulatory Gene Network for Specification of Endomesoderm in the Sea Urchin Embryo. Developmental Biology, 2002, 246, 162-190.	2.0	319
54	Precambrian Animal Life: Probable Developmental and Adult Cnidarian Forms from Southwest China. Developmental Biology, 2002, 248, 182-196.	2.0	150

PAOLA OLIVERI

#	Article	IF	CITATIONS
55	Precambrian animal diversity: Putative phosphatized embryos from the Doushantuo Formation of China. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4457-4462.	7.1	170
56	Gene expression during early embryogenesis of sea urchin: the histone and homeobox genes. Invertebrate Reproduction and Development, 1997, 31, 11-19.	0.8	0
57	Homeobox-containing gene transiently expressed in a spatially restricted pattern in the early sea urchin embryo Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8180-8184.	7.1	39
58	Expression of homeobox-containing genes in the sea urchin (Parancentrotus lividus) embryo. Genetica, 1994, 94, 141-150.	1.1	20