
Osvaldo Ferrarese-Filho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4060535/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The known unknowns in lignin biosynthesis and its engineering to improve lignocellulosic saccharification efficiency. Biomass Conversion and Biorefinery, 2023, 13, 2497-2515.	4.6	8
2	<i>p</i> -Methoxycinnamic acid disturbs cellular respiration and increases the lignification of <i>Euphorbia heterophylla</i> roots. Plant Biosystems, 2023, 157, 12-23.	1.6	2
3	Sustainable production of succinic acid and 3-hydroxypropionic acid from renewable feedstocks. , 2022, , 367-386.		1
4	Inhibiting tricin biosynthesis improves maize lignocellulose saccharification. Plant Physiology and Biochemistry, 2022, 178, 12-19.	5.8	2
5	Suppression of a BAHD acyltransferase decreases <i>p</i> oumaroyl on arabinoxylan and improves biomass digestibility in the model grass <i>Setaria viridis</i> . Plant Journal, 2021, 105, 136-150.	5.7	27
6	Inhibition of Maize Caffeate 3-O-Methyltransferase by Nitecapone as a Possible Approach to Reduce Lignocellulosic Biomass Recalcitrance. Plant Molecular Biology Reporter, 2021, 39, 179-191.	1.8	5
7	Titanium Dioxide Nanoparticles Induce Root Growth Inhibition in Soybean Due to Physical Damages. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	14
8	Aluminum oxide nanoparticles affect the cell wall structure and lignin composition slightly altering the soybean growth. Plant Physiology and Biochemistry, 2021, 159, 335-346.	5.8	14
9	Bromoacetic acid inhibits pyruvate orthophosphate dikinase and reduces photosynthetic activity in maize. Acta Physiologiae Plantarum, 2021, 43, 1.	2.1	0
10	The photosensitiser azure A disrupts mitochondrial bioenergetics through intrinsic and photodynamic effects. Toxicology, 2021, 455, 152766.	4.2	5
11	Cadmium uncouples mitochondrial oxidative phosphorylation and induces oxidative cellular stress in soybean roots. Environmental Science and Pollution Research, 2021, 28, 67711-67723.	5.3	8
12	The photodynamic and intrinsic effects of Azure B on mitochondrial bioenergetics and the consequences of its intrinsic effects on hepatic energy metabolism. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102446.	2.6	1
13	Lignin plays a key role in determining biomass recalcitrance in forage grasses. Renewable Energy, 2020, 147, 2206-2217.	8.9	38
14	Inhibition of Zea mays coniferyl aldehyde dehydrogenase by daidzin: A potential approach for the investigation of lignocellulose recalcitrance. Process Biochemistry, 2020, 90, 131-138.	3.7	30
15	Feruloyl esterase activity and its role in regulating the feruloylation of maize cell walls. Plant Physiology and Biochemistry, 2020, 156, 49-54.	5.8	6
16	Naringin inhibits the Zea mays coniferyl aldehyde dehydrogenase: an in silico and in vitro approach. Journal of Plant Biochemistry and Biotechnology, 2020, 29, 484-493.	1.7	4
17	Entacapone improves saccharification without affecting lignin and maize growth: An in silico, in vitro, and in vivo approach. Plant Physiology and Biochemistry, 2020, 151, 421-428.	5.8	5
18	Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochemistry Reviews, 2020, 19, 865-906.	6.5	182

#	Article	IF	CITATIONS
19	Modulation of cellulase activity by lignin-related compounds. Bioresource Technology Reports, 2020, 10, 100390.	2.7	11
20	The photodynamic and direct actions of methylene blue on mitochondrial energy metabolism: A balance of the useful and harmful effects of this photosensitizer. Free Radical Biology and Medicine, 2020, 153, 34-53.	2.9	25
21	L-DOPA and Dopamine in Plant Metabolism. Signaling and Communication in Plants, 2020, , 141-167.	0.7	7
22	Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant, Cell and Environment, 2020, 43, 2172-2191.	5.7	79
23	Chromatographic determination of shikimate for identification of conventional soybean and glyphosate resistant soybean. Bioscience Journal, 2020, 36, .	0.4	0
24	Hydrogen peroxide-acetic acid pretreatment increases the saccharification and enzyme adsorption on lignocellulose. Industrial Crops and Products, 2019, 140, 111657.	5.2	47
25	Exogenous application of rosmarinic acid improves saccharification without affecting growth and lignification of maize. Plant Physiology and Biochemistry, 2019, 142, 275-282.	5.8	16
26	Designing xylan for improved sustainable biofuel production. Plant Biotechnology Journal, 2019, 17, 2225-2227.	8.3	15
27	Calophyllum brasiliense Cambess: An alternative and promising source of shikimic acid. Sustainable Chemistry and Pharmacy, 2019, 14, 100188.	3.3	2
28	Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. Bioresource Technology, 2019, 278, 408-423.	9.6	90
29	Suppression of a single <scp>BAHD</scp> gene in <i>Setaria viridis</i> causes large, stable decreases in cell wall feruloylation and increases biomass digestibility. New Phytologist, 2018, 218, 81-93.	7.3	91
30	Comparative effects of L-DOPA and velvet bean seed extract on soybean lignification. Plant Signaling and Behavior, 2018, 13, e1451705.	2.4	5
31	Trans-aconitic acid inhibits the growth and photosynthesis of Glycine max. Plant Physiology and Biochemistry, 2018, 132, 490-496.	5.8	11
32	Lignin-induced growth inhibition in soybean exposed to iron oxide nanoparticles. Chemosphere, 2018, 211, 226-234.	8.2	8
33	Plant cell wall composition and enzymatic deconstruction. AIMS Bioengineering, 2018, 5, 63-77.	1.1	56
34	Phenolic Compounds in Plants: Implications for Bioenergy. , 2017, , 39-52.		2
35	Benzoxazolin-2-(3H)-one reduces photosynthetic activity and chlorophyll fluorescence in soybean. Photosynthetica, 2017, 55, 386-390.	1.7	4
36	Acyl-homoserine Lactone from <i>Saccharum × officinarum</i> with Stereochemistry-Dependent Growth Regulatory Activity. Journal of Natural Products, 2016, 79, 1316-1321.	3.0	5

Osvaldo Ferrarese-Filho

#	Article	IF	CITATIONS
37	Photosynthetic response of soybean to L-DOPA and aqueous extracts of velvet bean. Plant Growth Regulation, 2016, 80, 171-182.	3.4	12
38	Feruloyl esterase from Aspergillus clavatus improves xylan hydrolysis of sugarcane bagasse. AIMS Bioengineering, 2016, 4, 1-11.	1.1	9
39	Benzoxazolin-2(3H)-one inhibits soybean growth and alters the monomeric composition of lignin. Plant Signaling and Behavior, 2015, 10, e989059.	2.4	5
40	Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnology Journal, 2015, 13, 1224-1232.	8.3	210
41	The Acetyl Bromide Method Is Faster, Simpler and Presents Best Recovery of Lignin in Different Herbaceous Tissues than Klason and Thioglycolic Acid Methods. PLoS ONE, 2014, 9, e110000.	2.5	205
42	The role of L-DOPA in plants. Plant Signaling and Behavior, 2014, 9, e28275.	2.4	115
43	The effects of dopamine on antioxidant enzymes activities and reactive oxygen species levels in soybean roots. Plant Signaling and Behavior, 2014, 9, e977704.	2.4	31
44	Salt stress alters the cell wall polysaccharides and anatomy of coffee (Coffea arabica L.) leaf cells. Carbohydrate Polymers, 2014, 112, 686-694.	10.2	46
45	Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica) Tj ETQq1 1	0.784314 10.2	rggT /Overic
46	The effects of dopamine on root growth and enzyme activity in soybean seedlings. Plant Signaling and Behavior, 2013, 8, e25477.	2.4	32
47	Root growth and lignification of glyphosate susceptible and resistant soybean at low temperatures. Semina:Ciencias Agrarias, 2013, 34, 509-516.	0.3	0
48	Enhanced Lignin Monomer Production Caused by Cinnamic Acid and Its Hydroxylated Derivatives Inhibits Soybean Root Growth. PLoS ONE, 2013, 8, e80542.	2.5	41
49	Root Growth and Enzymes Related to the Lignification of Maize Seedlings Exposed to the Allelochemical L-DOPA. Scientific World Journal, The, 2013, 2013, 1-6.	2.1	17
50	Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth. PLoS ONE, 2013, 8, e69105.	2.5	98
51	α-Tocopherol levels in natural and artificial aging of soybean seeds. Acta Scientiarum - Agronomy, 2012, 34, .	0.6	18
52	EFFECTS OF CALCIUM ON LIGNIFICATION RELATED PARAMETERS IN SODIUM CHLORIDE-STRESSED SOYBEAN ROOTS. Journal of Plant Nutrition, 2012, 35, 1657-1670.	1.9	1
53	The effects of I-DOPA on root growth, lignification and enzyme activity in soybean seedlings. Acta Physiologiae Plantarum, 2012, 34, 1811-1817.	2.1	23
54	Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max). Journal of Plant Physiology, 2011, 168, 1627-1633.	3.5	98

#	Article	IF	CITATIONS
55	The Allelochemical L-DOPA Increases Melanin Production and Reduces Reactive Oxygen Species in Soybean Roots. Journal of Chemical Ecology, 2011, 37, 891-898.	1.8	32
56	Growth and root lignification of susceptible and glyphosate-resistant soybean. Acta Scientiarum - Agronomy, 2011, 33, .	0.6	2
57	Glyphosate affects lignin content and amino acid production in glyphosate-resistant soybean. Acta Physiologiae Plantarum, 2010, 32, 831-837.	2.1	36
58	Nitric oxide affecting root growth, lignification and related enzymes in soybean seedlings. Acta Physiologiae Plantarum, 2010, 32, 1039-1046.	2.1	33
59	Root Growth Inhibition and Lignification Induced by Salt Stress in Soybean. Journal of Agronomy and Crop Science, 2010, 196, 467-473.	3.5	97
60	Quantitative genetic analysis of methylxanthines and phenolic compounds in mate progenies. Pesquisa Agropecuaria Brasileira, 2010, 45, 171-177.	0.9	15
61	Naringenin inhibits the growth and stimulates the lignification of soybean root. Brazilian Archives of Biology and Technology, 2010, 53, 533-542.	0.5	27
62	Cadmium-induced lignification restricts soybean root growth. Ecotoxicology and Environmental Safety, 2010, 73, 1959-1964.	6.0	112
63	Lignification and related parameters in copper-exposed Matricaria chamomilla roots: Role of H2O2 and NO in this process. Plant Science, 2010, 179, 383-389.	3.6	59
64	Glyphosate-induced metabolic changes in susceptible and glyphosate-resistant soybean (Glycine max L.) roots. Pesticide Biochemistry and Physiology, 2009, 93, 28-33.	3.6	26
65	A simple chromatographic assay to discriminate between glyphosate-resistant and susceptible soybean (Glycine max) cultivars. European Journal of Agronomy, 2009, 31, 173-176.	4.1	10
66	Soybean root growth inhibition and lignification induced by p-coumaric acid. Environmental and Experimental Botany, 2009, 66, 25-30.	4.2	83
67	Bioassays on Plants. , 2009, , 399-428.		0
68	Soybean (Glycine max) Root Lignification Induced by Ferulic Acid. The Possible Mode of Action. Journal of Chemical Ecology, 2008, 34, 1230-1241.	1.8	102
69	Selective Liquid CO ₂ Extraction of Purine Alkaloids in Different <i>llex paraguariensis</i> Progenies Grown under Environmental Influences. Journal of Agricultural and Food Chemistry, 2007, 55, 6835-6841.	5.2	22
70	Methylxanthines and phenolic compounds in mate (Ilex paraguariensis St. Hil.) progenies grown in Brazil. Journal of Food Composition and Analysis, 2007, 20, 553-558.	3.9	66
71	l-DOPA Increases Lignification Associated with Clycine max Root Growth-Inhibition. Journal of Chemical Ecology, 2007, 33, 265-275.	1.8	17

Role of Calcium on Phenolic Compounds and Enzymes Related to Lignification in Soybean (Glycine max) Tj ETQq0 0.0 rgBT /Qverlock 10

#	Article	IF	CITATIONS
73	Peroxidase activity and lignification in soybean root growth-inhibition by juglone. Biologia Plantarum, 2006, 50, 315-317.	1.9	28
74	High performance liquid chromatography method forÂtheÂdetermination ofÂcinnamyl alcohol dehydrogenase activity inÂsoybean roots. Plant Physiology and Biochemistry, 2006, 44, 511-515.	5.8	26
75	Lignin content and peroxidase activity in soybean seed coat susceptible and resistant to mechanical damage. Acta Physiologiae Plantarum, 2005, 27, 103-108.	2.1	21
76	A new procedure for quantification of lignin in soybean (Glycine max (L.) Merrill) seed coat and their relationship with the resistance to mechanical damage. Seed Science and Technology, 2005, 33, 511-515.	1.4	27
77	Lignification and Related Enzymes in Glycine max Root Growth-Inhibition by Ferulic Acid. Journal of Chemical Ecology, 2004, 30, 1203-1212.	1.8	96
78	Proximate composition and fatty acid profile of Bombyx mori L. chrysalis toast. Journal of Food Composition and Analysis, 2003, 16, 451-457.	3.9	41
79	Canola (Brassica napus L.) seed germination influenced by cinnamic and benzoic acids and derivatives: effects on peroxidase. Seed Science and Technology, 2003, 31, 39-46.	1.4	22
80	Peroxidase and lipid peroxidation of soybean roots in response to p-coumaric and p-hydroxybenzoic acids. Brazilian Archives of Biology and Technology, 2003, 46, 193-198.	0.5	38
81	Peroxidase and phenylalanine ammonia-lyase activities, phenolic acid contents, and allelochemicals-inhibited root growth of soybean. Biological Research, 2002, 35, 59-66.	3.4	36
82	Carbohydrate and lipid status in soybean roots influenced by ferulic acid uptake. Acta Physiologiae Plantarum, 2001, 23, 421-427.	2.1	11
83	Lipid Accumulation during Canola Seed Germination in Response to Cinnamic Acid Derivatives. Biologia Plantarum, 2000, 43, 313-316.	1.9	30
84	Phenylalanine Ammonia-Lyase Activity in Soybean Roots Extract Measured by Reverse-Phase High Performance Liquid Chromatography. Plant Biology, 2000, 2, 152-153.	3.8	35
85	Ferulic acid uptake by soybean root in nutrient culture. Acta Physiologiae Plantarum, 2000, 22, 121-124.	2.1	18
86	Ferulic acid depletion by cultured soybean seedlings under action of glucose and methionine. Brazilian Archives of Biology and Technology, 2000, 43, 515-518.	0.5	0
87	Consumption of ferulic and p-hydroxybenzoic acids by soybean root tips. Brazilian Archives of Biology and Technology, 2000, 43, 281-284.	0.5	4
88	Effects of fatty acids on carbohydrates and lipids of canola seeds during germination. Brazilian Archives of Biology and Technology, 1998, 41, 315-319.	0.5	7
89	Transport, metabolism and distribution space of octanoate in the perfused rat liver. , 1997, 15, 69-80.		6
90	Transport and metabolism of palmitate in the rat liver. Net flux and unidirectional fluxes across the cell membrane. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1103, 239-249.	2.6	10

#	Article	IF	CITATIONS
91	Treating maize plants with benzohydrazide increases saccharification of lignocellulose: A non-transgenic approach to improve cellulosic ethanol production. Biomass Conversion and Biorefinery, 0, , 1.	4.6	0