Vladimir A Tyurin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4058990/publications.pdf Version: 2024-02-01

		25014	20943
116	15,125	57	115
papers	citations	h-index	g-index
117 all docs	117 docs citations	117 times ranked	16591 citing authors

#	Article	IF	CITATIONS
1	P. aeruginosa augments irradiation injury via 15-lipoxygenase–catalyzed generation of 15-HpETE-PE and induction of theft-ferroptosis. JCI Insight, 2022, 7, .	2.3	14
2	Necroptosis triggers spatially restricted neutrophil-mediated vascular damage during lung ischemia reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2111537119.	3.3	23
3	Phospholipase iPLA2β averts ferroptosis by eliminating a redox lipid death signal. Nature Chemical Biology, 2021, 17, 465-476.	3.9	168
4	A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO• sabotage of theft-ferroptosis. Redox Biology, 2021, 45, 102045.	3.9	40
5	Elucidating the contribution of mitochondrial glutathione to ferroptosis in cardiomyocytes. Redox Biology, 2021, 45, 102021.	3.9	88
6	Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure. Redox Biology, 2021, 47, 102143.	3.9	47
7	PLA2G6 guards placental trophoblasts against ferroptotic injury. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27319-27328.	3.3	98
8	Reactivation of dormant tumor cells by modified lipids derived from stress-activated neutrophils. Science Translational Medicine, 2020, 12, .	5.8	107
9	Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nature Chemical Biology, 2020, 16, 278-290.	3.9	299
10	Lipidomics and RNA sequencing reveal a novel subpopulation of nanovesicle within extracellular matrix biomaterials. Science Advances, 2020, 6, eaay4361.	4.7	54
11	Redox (phospho)lipidomics of signaling in inflammation and programmed cell death. Journal of Leukocyte Biology, 2019, 106, 57-81.	1.5	33
12	Fatty acid transport proteinÂ2 reprograms neutrophils in cancer. Nature, 2019, 569, 73-78.	13.7	440
13	Surface-Binding to Cardiolipin Nanodomains Triggers Cytochrome c Pro-apoptotic Peroxidase Activity via Localized Dynamics. Structure, 2019, 27, 806-815.e4.	1.6	28
14	"Redox lipidomics technology: Looking for a needle in a haystack― Chemistry and Physics of Lipids, 2019, 221, 93-107.	1.5	35
15	"Only a Life Lived for Others Is Worth Living― Redox Signaling by Oxygenated Phospholipids in Cell Fate Decisions. Antioxidants and Redox Signaling, 2018, 29, 1333-1358.	2.5	33
16	Empowerment of 15-Lipoxygenase Catalytic Competence in Selective Oxidation of Membrane ETE-PE to Ferroptotic Death Signals, HpETE-PE. Journal of the American Chemical Society, 2018, 140, 17835-17839.	6.6	63
17	Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. Journal of Clinical Investigation, 2018, 128, 4639-4653.	3.9	159
18	Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1354-1368.	1.2	16

#	Article	IF	CITATIONS
19	Lipidomics Characterization of Biosynthetic and Remodeling Pathways of Cardiolipins in Genetically and Nutritionally Manipulated Yeast Cells. ACS Chemical Biology, 2017, 12, 265-281.	1.6	25
20	PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell, 2017, 171, 628-641.e26.	13.5	589
21	Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nature Communications, 2017, 8, 2122.	5.8	196
22	Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology, 2017, 13, 81-90.	3.9	1,589
23	Known unknowns of cardiolipin signaling: The best is yet to come. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 8-24.	1.2	94
24	Intraoral Mitochondrial-Targeted GS-Nitroxide, JP4-039, Radioprotects Normal Tissue in Tumor-Bearing Radiosensitive Fancd2–/– (C57BL/6) Mice. Radiation Research, 2016, 185, 134.	0.7	27
25	Biosynthesis of oxidized lipid mediators via lipoprotein-associated phospholipase A ₂ hydrolysis of extracellular cardiolipin induces endothelial toxicity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L303-L316.	1.3	20
26	Isolation of human trophoblastic extracellular vesicles and characterization of their cargo and antiviral activity. Placenta, 2016, 47, 86-95.	0.7	82
27	Mitochondrial Redox Opto-Lipidomics Reveals Mono-Oxygenated Cardiolipins as Pro-Apoptotic Death Signals. ACS Chemical Biology, 2016, 11, 530-540.	1.6	22
28	Cardiolipin Signaling Mechanisms: Collapse of Asymmetry and Oxidation. Antioxidants and Redox Signaling, 2015, 22, 1667-1680.	2.5	50
29	Dichotomous roles for externalized cardiolipin in extracellular signaling: Promotion of phagocytosis and attenuation of innate immunity. Science Signaling, 2015, 8, ra95.	1.6	62
30	Deciphering of Mitochondrial Cardiolipin Oxidative Signaling in Cerebral Ischemia-Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 319-328.	2.4	51
31	TNFR1/Phox Interaction and TNFR1 Mitochondrial Translocation Thwart Silica-Induced Pulmonary Fibrosis. Journal of Immunology, 2014, 192, 3837-3846.	0.4	31
32	Characterization of cardiolipins and their oxidation products by LC–MS analysis. Chemistry and Physics of Lipids, 2014, 179, 3-10.	1.5	39
33	Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology, 2014, 16, 1180-1191.	4.6	2,241
34	Molecular speciation and dynamics of oxidized triacylglycerols in lipid droplets: Mass spectrometry and coarse-grained simulations. Free Radical Biology and Medicine, 2014, 76, 53-60.	1.3	26
35	A mitochondrial pathway for biosynthesis of lipid mediators. Nature Chemistry, 2014, 6, 542-552.	6.6	130
36	Quantification of Selective Phosphatidylserine Oxidation During Apoptosis. Methods in Molecular Biology, 2014, 1105, 603-611.	0.4	4

#	Article	IF	CITATIONS
37	Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nature Cell Biology, 2013, 15, 1197-1205.	4.6	792
38	LC/MS characterization of rotenone induced cardiolipin oxidation in human lymphocytes: Implications for mitochondrial dysfunction associated with Parkinson's disease. Molecular Nutrition and Food Research, 2013, 57, 1410-1422.	1.5	27
39	Specificity of Lipoprotein-Associated Phospholipase A ₂ toward Oxidized Phosphatidylserines: Liquid Chromatography–Electrospray Ionization Mass Spectrometry Characterization of Products and Computer Modeling of Interactions. Biochemistry, 2012, 51, 9736-9750.	1.2	23
40	Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2413-2423.	1.4	57
41	Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nature Neuroscience, 2012, 15, 1407-1413.	7.1	254
42	Mitochondria targeting of nonâ€peroxidizable triphenylphosphonium conjugated oleic acid protects mouse embryonic cells against apoptosis: Role of cardiolipin remodeling. FEBS Letters, 2012, 586, 235-241.	1.3	27
43	A Manganese–Porphyrin Complex Decomposes H ₂ O ₂ , Inhibits Apoptosis, and Acts as a Radiation Mitigator in Vivo. ACS Medicinal Chemistry Letters, 2011, 2, 814-817.	1.3	26
44	Oxidative Lipidomics of \hat{I}^3 -Radiation-Induced Lung Injury: Mass Spectrometric Characterization of Cardiolipin and Phosphatidylserine Peroxidation. Radiation Research, 2011, 175, 610.	0.7	70
45	Clobal Phospholipidomics Analysis Reveals Selective Pulmonary Peroxidation Profiles upon Inhalation of Single-Walled Carbon Nanotubes. ACS Nano, 2011, 5, 7342-7353.	7.3	64
46	Mass-spectrometric characterization of peroxidized and hydrolyzed lipids in plasma and dendritic cells of tumor-bearing animals. Biochemical and Biophysical Research Communications, 2011, 413, 149-153.	1.0	15
47	A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death. Nature Communications, 2011, 2, 497.	5.8	91
48	The cyclooxygenase site, but not the peroxidase site of cyclooxygenaseâ€2 is required for neurotoxicity in hypoxic and ischemic injury. Journal of Neurochemistry, 2010, 113, 965-977.	2.1	26
49	Lipid accumulation and dendritic cell dysfunction in cancer. Nature Medicine, 2010, 16, 880-886.	15.2	539
50	Oxidative lipidomics of hyperoxic acute lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L73-L85.	1.3	73
51	Aberrant Expression of Myeloperoxidase in Astrocytes Promotes Phospholipid Oxidation and Memory Deficits in a Mouse Model of Alzheimer Disease. Journal of Biological Chemistry, 2009, 284, 3158-3169.	1.6	102
52	Peroxidase Activity of Hemoglobin·Haptoglobin Complexes. Journal of Biological Chemistry, 2009, 284, 30395-30407.	1.6	86
53	Peroxidase Mechanism of Lipid-dependent Cross-linking of Synuclein with Cytochrome c. Journal of Biological Chemistry, 2009, 284, 15951-15969.	1.6	86
54	Starving Neurons Show Sex Difference in Autophagy. Journal of Biological Chemistry, 2009, 284, 2383-2396.	1.6	180

Vladimir A Tyurin

#	Article	IF	CITATIONS
55	Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radical Biology and Medicine, 2009, 46, 1439-1453.	1.3	382
56	Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 2863-2872.	1.2	63
57	Heterolytic Reduction of Fatty Acid Hydroperoxides by Cytochrome <i>c</i> /Cardiolipin Complexes: Antioxidant Function in Mitochondria. Journal of the American Chemical Society, 2009, 131, 11288-11289.	6.6	62
58	Massâ€spectrometric characterization of phospholipids and their primary peroxidation products in rat cortical neurons during staurosporineâ€induced apoptosis. Journal of Neurochemistry, 2008, 107, 1614-1633.	2.1	76
59	Activation of NO donors in mitochondria: Peroxidase metabolism of (2â€hydroxyaminoâ€vinyl)â€triphenylâ€phosphonium by cytochrome <i>c</i> releases NO and protects cells against apoptosis. FEBS Letters, 2008, 582, 725-728.	1.3	21
60	Corrigendum to "Activation of NO donors in mitochondria: Peroxidase metabolism of (2-hydroxyamino-vinyl)-triphenyl-phosphonium by cytochromecreleases NO and protects cells against apoptosis―[FEBS Lett. 582 (2008) 725-728]. FEBS Letters, 2008, 582, 1634-1634.	1.3	0
61	Oxidative lipidomics of Î ³ -irradiation-induced intestinal injury. Free Radical Biology and Medicine, 2008, 44, 299-314.	1.3	84
62	Cardiolipin deficiency leads to decreased cardiolipin peroxidation and increased resistance of cells to apoptosis. Free Radical Biology and Medicine, 2008, 44, 1935-1944.	1.3	66
63	Chapter Nineteen Oxidative Lipidomics of Programmed Cell Death. Methods in Enzymology, 2008, 442, 375-393.	0.4	58
64	Nitrosative Stress Inhibits the Aminophospholipid Translocase Resulting in Phosphatidylserine Externalization and Macrophage Engulfment. Journal of Biological Chemistry, 2007, 282, 8498-8509.	1.6	74
65	The Hierarchy of Structural Transitions Induced in Cytochrome <i>c</i> by Anionic Phospholipids Determines Its Peroxidase Activation and Selective Peroxidation during Apoptosis in Cells. Biochemistry, 2007, 46, 14232-14244.	1.2	110
66	Selective early cardiolipin peroxidation after traumatic brain injury: an oxidative lipidomics analysis. Annals of Neurology, 2007, 62, 154-169.	2.8	168
67	Mechanisms of Cardiolipin Oxidation by Cytochrome c: Relevance to Pro- and Antiapoptotic Functions of Etoposide. Molecular Pharmacology, 2006, 70, 706-717.	1.0	76
68	Nitric Oxide Inhibits Peroxidase Activity of Cytochrome c· Cardiolipin Complex and Blocks Cardiolipin Oxidation. Journal of Biological Chemistry, 2006, 281, 14554-14562.	1.6	88
69	Peroxidase Activity and Structural Transitions of Cytochrome c Bound to Cardiolipin-Containing Membranes. Biochemistry, 2006, 45, 4998-5009.	1.2	346
70	Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nature Chemical Biology, 2005, 1, 223-232.	3.9	1,088
71	Neuroprotective effects of TEMPOL in central and peripheral nervous system models of Parkinson's disease. Biochemical Pharmacology, 2005, 70, 1371-1381.	2.0	56
72	S-Nitrosoalbumin–Mediated Relaxation Is Enhanced by Ascorbate and Copper. Hypertension, 2005, 45, 21-27.	1.3	58

#	Article	IF	CITATIONS
73	Thioredoxin and Lipoic Acid Catalyze the Denitrosation of Low Molecular Weight and ProteinS-Nitrosothiols. Journal of the American Chemical Society, 2005, 127, 15815-15823.	6.6	151
74	Mitochondrial Targeting of Selective Electron Scavengers:  Synthesis and Biological Analysis of Hemigramicidinâ"TEMPO Conjugates. Journal of the American Chemical Society, 2005, 127, 12460-12461.	6.6	146
75	Lipid Antioxidant, Etoposide, Inhibits Phosphatidylserine Externalization and Macrophage Clearance of Apoptotic Cells by Preventing Phosphatidylserine Oxidation. Journal of Biological Chemistry, 2004, 279, 6056-6064.	1.6	68
76	Arachidonic acid-induced carbon-centered radicals and phospholipid peroxidation in cyclo-oxygenase-2-transfected PC12 cells. Journal of Neurochemistry, 2004, 90, 1036-1049.	2.1	58
77	Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radical Biology and Medicine, 2004, 37, 1963-1985.	1.3	320
78	Prevention of catecholaminergic oxidative toxicity by 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl and its recycling complex with polynitroxylated albumin, TEMPOL/PNA. Brain Research, 2004, 1012, 13-21.	1.1	17
79	Cytochrome c release is required for phosphatidylserine peroxidation during fas-triggered apoptosis in lung epithelial A549 cells. Lipids, 2004, 39, 1133-1142.	0.7	36
80	The Plasma Membrane Is the Site of Selective Phosphatidylserine Oxidation During Apoptosis: Role of Cytochromec. Antioxidants and Redox Signaling, 2004, 6, 209-225.	2.5	42
81	Oxidation of phosphatidylserine: a mechanism for plasma membrane phospholipid scrambling during apoptosis?. Biochemical and Biophysical Research Communications, 2004, 324, 1059-1064.	1.0	88
82	Regeneration of lipophilic antioxidants by NAD(P)H:quinone oxidoreductase 1. Protoplasma, 2003, 221, 129-135.	1.0	18
83	Macrophage recognition of externalized phosphatidylserine and phagocytosis of apoptotic Jurkat cells—existence of a threshold. Archives of Biochemistry and Biophysics, 2003, 413, 41-52.	1.4	111
84	Redox Sensor Function of Metallothioneins. Methods in Enzymology, 2002, 353, 268-281.	0.4	30
85	NADPH Oxidase-dependent Oxidation and Externalization of Phosphatidylserine during Apoptosis in Me2SO-differentiated HL-60 Cells. Journal of Biological Chemistry, 2002, 277, 49965-49975.	1.6	123
86	[14] Peroxidation of phosphatidylserine in mechanisms of apoptotic signaling. Methods in Enzymology, 2002, 352, 159-174.	0.4	10
87	[30] Quantitation of S-nitrosothiols in cells and biological fluids. Methods in Enzymology, 2002, 352, 347-360.	0.4	19
88	Oxidative Stress Following Traumatic Brain Injury in Rats. Journal of Neurochemistry, 2002, 75, 2178-2189.	2.1	214
89	Selective Peroxidation and Externalization of Phosphatidylserine in Normal Human Epidermal Keratinocytes During Oxidative Stress Induced by Cumene Hydroperoxide. Journal of Investigative Dermatology, 2002, 118, 1008-1018.	0.3	38
90	Anti-/pro-oxidant effects of phenolic compounds in cells: are colchicine metabolites chain-breaking antioxidants?. Toxicology, 2002, 177, 105-117.	2.0	19

#	Article	IF	CITATIONS
91	Title is missing!. Molecular and Cellular Biochemistry, 2002, 234/235, 125-133.	1.4	10
92	MISHANDLING OF COPPER BY ALBUMIN: ROLE IN REDOX-CYCLING AND OXIDATIVE STRESS IN PREECLAMPSIA PLASMA. Hypertension in Pregnancy, 2001, 20, 221-241.	0.5	20
93	Nitric oxide-dependent pro-oxidant and pro-apoptotic effect of metallothioneins in HL-60 cells challenged with cupric nitrilotriacetate. Biochemical Journal, 2001, 354, 397.	1.7	25
94	Redox Cycling of Phenol Induces Oxidative Stress in Human Epidermal Keratinocytes. Journal of Investigative Dermatology, 2000, 114, 354-364.	0.3	89
95	Quinolizin-Coumarins as Physical Enhancers of Chemiluminescence during Lipid Peroxidation in Live HL-60 Cells. Archives of Biochemistry and Biophysics, 2000, 384, 154-162.	1.4	15
96	Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Letters, 2000, 477, 1-7.	1.3	162
97	Antioxidant and Antiapoptotic Function of Metallothioneins in HL-60 Cells Challenged with Copper Nitrilotriacetate. Chemical Research in Toxicology, 2000, 13, 1275-1286.	1.7	30
98	Reconstitution of Apo-Superoxide Dismutase by Nitric Oxide-Induced Copper Transfer from Metallothioneins. Chemical Research in Toxicology, 2000, 13, 922-931.	1.7	35
99	Nitric Oxide Dissociates Lipid Oxidation from Apoptosis and Phosphatidylserine Externalization during Oxidative Stress. Biochemistry, 2000, 39, 127-138.	1.2	39
100	tert-butyl hydroperoxide/hemoglobin-induced oxidative stress and damage to vascular smooth muscle cells. Biochemical Pharmacology, 1999, 57, 989-1001.	2.0	11
101	Selective oxidation and externalization of membrane phosphatidylserine: Bcl-2-induced potentiation of the final common pathway for apoptosis. Brain Research, 1999, 831, 125-130.	1.1	28
102	Myeloperoxidase-catalyzed redox-cycling of phenol promotes lipid peroxidation and thiol oxidation in HL-60 cells. Free Radical Biology and Medicine, 1999, 27, 1050-1063.	1.3	56
103	Peroxidase-Catalyzed Pro- versus Antioxidant Effects of 4-Hydroxytamoxifen:  Enzyme Specificity and Biochemical Sequelae. Chemical Research in Toxicology, 1999, 12, 28-37.	1.7	28
104	Intracellular S-Glutathionyl Adducts in Murine Lung and Human Bronchoepithelial Cells after Exposure to Diisocyanatotoluene. Chemical Research in Toxicology, 1999, 12, 931-936.	1.7	73
105	Redox Regulation of Copper–Metallothionein. Archives of Biochemistry and Biophysics, 1999, 363, 171-181.	1.4	60
106	Differential Membrane Antioxidant Effects of Immediate and Long-Term Estradiol Treatment of MCF-7 Breast Cancer Cells. Biochemical and Biophysical Research Communications, 1999, 260, 410-415.	1.0	15
107	Glutamate-induced cytotoxicity in PC12 pheochromocytoma cells: role of oxidation of phospholipids, glutathione and protein sulfhydryls revealed by bcl-2 transfection. Molecular Brain Research, 1998, 60, 270-281.	2.5	31
108	Plasma membrane NADH-coenzyme Q0 reductase generates semiquinone radicals and recycles vitamin E homologue in a superoxide-dependent reaction. FEBS Letters, 1998, 428, 43-46.	1.3	53

#	Article	IF	CITATIONS
109	Random versus Selective Membrane Phospholipid Oxidation in Apoptosis:  Role of Phosphatidylserine. Biochemistry, 1998, 37, 13781-13790.	1.2	72
110	Amphotericin B as an intracellular antioxidant. Biochemical Pharmacology, 1997, 54, 937-945.	2.0	13
111	Direct Evidence for Antioxidant Effect of Bcl-2 in PC12 Rat Pheochromocytoma Cells. Archives of Biochemistry and Biophysics, 1997, 344, 413-423.	1.4	84
112	Peroxidase-catalyzed oxidation of \hat{l}^2 -carotene in HL-60 cells and in model systems: Involvement of phenoxyl radicals. Lipids, 1997, 32, 131-142.	0.7	15
113	Ganglioside GM1 protects cAMP 3′ 5′: Phosphodiesterase from inactivation caused by lipid peroxidation in brain synaptosomes of rats. Molecular and Chemical Neuropathology, 1993, 19, 205-217.	1.0	18
114	Acyl-trafficking in membrane phospholipid fatty acid turnover: The transfer of fatty acid from the acyl-L-carnitine pool to membrane phospholipids in intact human erythrocytes. Biochemical and Biophysical Research Communications, 1992, 187, 353-358.	1.0	38
115	Ganglioside-dependent factor, inhibiting lipid peroxidation in rat brain synaptosomes. Neurochemistry International, 1992, 20, 401-407.	1.9	29
116	Antioxidant action of ubiquinol homologues with different isoprenoid chain length in biomembranes. Free Radical Biology and Medicine, 1990, 9, 117-126.	1.3	131