Vladimir A Tyurin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4058990/publications.pdf

Version: 2024-02-01

25034 20961 15,125 116 57 115 citations h-index g-index papers 117 117 117 16591 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology, 2014, 16, 1180-1191.	10.3	2,241
2	Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology, 2017, 13, 81-90.	8.0	1,589
3	Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nature Chemical Biology, 2005, 1, 223-232.	8.0	1,088
4	Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nature Cell Biology, 2013, 15, 1197-1205.	10.3	792
5	PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell, 2017, 171, 628-641.e26.	28.9	589
6	Lipid accumulation and dendritic cell dysfunction in cancer. Nature Medicine, 2010, 16, 880-886.	30.7	539
7	Fatty acid transport proteinÂ2 reprograms neutrophils in cancer. Nature, 2019, 569, 73-78.	27.8	440
8	Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radical Biology and Medicine, 2009, 46, 1439-1453.	2.9	382
9	Peroxidase Activity and Structural Transitions of Cytochrome c Bound to Cardiolipin-Containing Membranes. Biochemistry, 2006, 45, 4998-5009.	2.5	346
10	Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radical Biology and Medicine, 2004, 37, 1963-1985.	2.9	320
11	Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nature Chemical Biology, 2020, 16, 278-290.	8.0	299
12	Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nature Neuroscience, 2012, 15, 1407-1413.	14.8	254
13	Oxidative Stress Following Traumatic Brain Injury in Rats. Journal of Neurochemistry, 2000, 75, 2178-2189.	3.9	214
14	Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nature Communications, 2017, 8, 2122.	12.8	196
15	Starving Neurons Show Sex Difference in Autophagy. Journal of Biological Chemistry, 2009, 284, 2383-2396.	3.4	180
16	Selective early cardiolipin peroxidation after traumatic brain injury: an oxidative lipidomics analysis. Annals of Neurology, 2007, 62, 154-169.	5. 3	168
17	Phospholipase iPLA2 \hat{l}^2 averts ferroptosis by eliminating a redox lipid death signal. Nature Chemical Biology, 2021, 17, 465-476.	8.0	168
18	Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Letters, 2000, 477, 1-7.	2.8	162

#	Article	IF	Citations
19	Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. Journal of Clinical Investigation, 2018, 128, 4639-4653.	8.2	159
20	Thioredoxin and Lipoic Acid Catalyze the Denitrosation of Low Molecular Weight and ProteinS-Nitrosothiols. Journal of the American Chemical Society, 2005, 127, 15815-15823.	13.7	151
21	Mitochondrial Targeting of Selective Electron Scavengers:  Synthesis and Biological Analysis of Hemigramicidinâ°TEMPO Conjugates. Journal of the American Chemical Society, 2005, 127, 12460-12461.	13.7	146
22	Antioxidant action of ubiquinol homologues with different isoprenoid chain length in biomembranes. Free Radical Biology and Medicine, 1990, 9, 117-126.	2.9	131
23	A mitochondrial pathway for biosynthesis of lipid mediators. Nature Chemistry, 2014, 6, 542-552.	13.6	130
24	NADPH Oxidase-dependent Oxidation and Externalization of Phosphatidylserine during Apoptosis in Me2SO-differentiated HL-60 Cells. Journal of Biological Chemistry, 2002, 277, 49965-49975.	3.4	123
25	Macrophage recognition of externalized phosphatidylserine and phagocytosis of apoptotic Jurkat cells—existence of a threshold. Archives of Biochemistry and Biophysics, 2003, 413, 41-52.	3.0	111
26	The Hierarchy of Structural Transitions Induced in Cytochrome <i>c</i> by Anionic Phospholipids Determines Its Peroxidase Activation and Selective Peroxidation during Apoptosis in Cells. Biochemistry, 2007, 46, 14232-14244.	2.5	110
27	Reactivation of dormant tumor cells by modified lipids derived from stress-activated neutrophils. Science Translational Medicine, 2020, 12, .	12.4	107
28	Aberrant Expression of Myeloperoxidase in Astrocytes Promotes Phospholipid Oxidation and Memory Deficits in a Mouse Model of Alzheimer Disease. Journal of Biological Chemistry, 2009, 284, 3158-3169.	3.4	102
29	PLA2G6 guards placental trophoblasts against ferroptotic injury. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27319-27328.	7.1	98
30	Known unknowns of cardiolipin signaling: The best is yet to come. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 8-24.	2.4	94
31	A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death. Nature Communications, 2011, 2, 497.	12.8	91
32	Redox Cycling of Phenol Induces Oxidative Stress in Human Epidermal Keratinocytes. Journal of Investigative Dermatology, 2000, 114, 354-364.	0.7	89
33	Oxidation of phosphatidylserine: a mechanism for plasma membrane phospholipid scrambling during apoptosis?. Biochemical and Biophysical Research Communications, 2004, 324, 1059-1064.	2.1	88
34	Nitric Oxide Inhibits Peroxidase Activity of Cytochrome c· Cardiolipin Complex and Blocks Cardiolipin Oxidation. Journal of Biological Chemistry, 2006, 281, 14554-14562.	3.4	88
35	Elucidating the contribution of mitochondrial glutathione to ferroptosis in cardiomyocytes. Redox Biology, 2021, 45, 102021.	9.0	88
36	Peroxidase Activity of Hemoglobin·Haptoglobin Complexes. Journal of Biological Chemistry, 2009, 284, 30395-30407.	3.4	86

#	Article	IF	Citations
37	Peroxidase Mechanism of Lipid-dependent Cross-linking of Synuclein with Cytochrome c. Journal of Biological Chemistry, 2009, 284, 15951-15969.	3.4	86
38	Direct Evidence for Antioxidant Effect of Bcl-2 in PC12 Rat Pheochromocytoma Cells. Archives of Biochemistry and Biophysics, 1997, 344, 413-423.	3.0	84
39	Oxidative lipidomics of Î ³ -irradiation-induced intestinal injury. Free Radical Biology and Medicine, 2008, 44, 299-314.	2.9	84
40	Isolation of human trophoblastic extracellular vesicles and characterization of their cargo and antiviral activity. Placenta, 2016, 47, 86-95.	1.5	82
41	Mechanisms of Cardiolipin Oxidation by Cytochrome c: Relevance to Pro- and Antiapoptotic Functions of Etoposide. Molecular Pharmacology, 2006, 70, 706-717.	2.3	76
42	Massâ€spectrometric characterization of phospholipids and their primary peroxidation products in rat cortical neurons during staurosporineâ€induced apoptosis. Journal of Neurochemistry, 2008, 107, 1614-1633.	3.9	76
43	Nitrosative Stress Inhibits the Aminophospholipid Translocase Resulting in Phosphatidylserine Externalization and Macrophage Engulfment. Journal of Biological Chemistry, 2007, 282, 8498-8509.	3.4	74
44	Intracellular S-Glutathionyl Adducts in Murine Lung and Human Bronchoepithelial Cells after Exposure to Diisocyanatotoluene. Chemical Research in Toxicology, 1999, 12, 931-936.	3.3	73
45	Oxidative lipidomics of hyperoxic acute lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L73-L85.	2.9	73
46	Random versus Selective Membrane Phospholipid Oxidation in Apoptosis:  Role of Phosphatidylserine. Biochemistry, 1998, 37, 13781-13790.	2.5	72
47	Oxidative Lipidomics of \hat{I}^3 -Radiation-Induced Lung Injury: Mass Spectrometric Characterization of Cardiolipin and Phosphatidylserine Peroxidation. Radiation Research, 2011, 175, 610.	1.5	70
48	Lipid Antioxidant, Etoposide, Inhibits Phosphatidylserine Externalization and Macrophage Clearance of Apoptotic Cells by Preventing Phosphatidylserine Oxidation. Journal of Biological Chemistry, 2004, 279, 6056-6064.	3.4	68
49	Cardiolipin deficiency leads to decreased cardiolipin peroxidation and increased resistance of cells to apoptosis. Free Radical Biology and Medicine, 2008, 44, 1935-1944.	2.9	66
50	Global Phospholipidomics Analysis Reveals Selective Pulmonary Peroxidation Profiles upon Inhalation of Single-Walled Carbon Nanotubes. ACS Nano, 2011, 5, 7342-7353.	14.6	64
51	Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 2863-2872.	2.3	63
52	Empowerment of 15-Lipoxygenase Catalytic Competence in Selective Oxidation of Membrane ETE-PE to Ferroptotic Death Signals, HpETE-PE. Journal of the American Chemical Society, 2018, 140, 17835-17839.	13.7	63
53	Heterolytic Reduction of Fatty Acid Hydroperoxides by Cytochrome <i>c</i> /Cardiolipin Complexes: Antioxidant Function in Mitochondria. Journal of the American Chemical Society, 2009, 131, 11288-11289.	13.7	62
54	Dichotomous roles for externalized cardiolipin in extracellular signaling: Promotion of phagocytosis and attenuation of innate immunity. Science Signaling, 2015, 8, ra95.	3.6	62

#	Article	IF	CITATIONS
55	Redox Regulation of Copper–Metallothionein. Archives of Biochemistry and Biophysics, 1999, 363, 171-181.	3.0	60
56	Arachidonic acidâ€induced carbonâ€centered radicals and phospholipid peroxidation in cycloâ€oxygenaseâ€2â€transfected PC12 cells. Journal of Neurochemistry, 2004, 90, 1036-1049.	3.9	58
57	S-Nitrosoalbumin–Mediated Relaxation Is Enhanced by Ascorbate and Copper. Hypertension, 2005, 45, 21-27.	2.7	58
58	Chapter Nineteen Oxidative Lipidomics of Programmed Cell Death. Methods in Enzymology, 2008, 442, 375-393.	1.0	58
59	Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2413-2423.	2.6	57
60	Myeloperoxidase-catalyzed redox-cycling of phenol promotes lipid peroxidation and thiol oxidation in HL-60 cells. Free Radical Biology and Medicine, 1999, 27, 1050-1063.	2.9	56
61	Neuroprotective effects of TEMPOL in central and peripheral nervous system models of Parkinson's disease. Biochemical Pharmacology, 2005, 70, 1371-1381.	4.4	56
62	Lipidomics and RNA sequencing reveal a novel subpopulation of nanovesicle within extracellular matrix biomaterials. Science Advances, 2020, 6, eaay4361.	10.3	54
63	Plasma membrane NADH-coenzyme Q0 reductase generates semiquinone radicals and recycles vitamin E homologue in a superoxide-dependent reaction. FEBS Letters, 1998, 428, 43-46.	2.8	53
64	Deciphering of Mitochondrial Cardiolipin Oxidative Signaling in Cerebral Ischemia-Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 319-328.	4.3	51
65	Cardiolipin Signaling Mechanisms: Collapse of Asymmetry and Oxidation. Antioxidants and Redox Signaling, 2015, 22, 1667-1680.	5.4	50
66	Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure. Redox Biology, 2021, 47, 102143.	9.0	47
67	The Plasma Membrane Is the Site of Selective Phosphatidylserine Oxidation During Apoptosis: Role of Cytochromec. Antioxidants and Redox Signaling, 2004, 6, 209-225.	5.4	42
68	A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO• sabotage of theft-ferroptosis. Redox Biology, 2021, 45, 102045.	9.0	40
69	Nitric Oxide Dissociates Lipid Oxidation from Apoptosis and Phosphatidylserine Externalization during Oxidative Stress. Biochemistry, 2000, 39, 127-138.	2.5	39
70	Characterization of cardiolipins and their oxidation products by LC–MS analysis. Chemistry and Physics of Lipids, 2014, 179, 3-10.	3.2	39
71	Acyl-trafficking in membrane phospholipid fatty acid turnover: The transfer of fatty acid from the acyl-L-carnitine pool to membrane phospholipids in intact human erythrocytes. Biochemical and Biophysical Research Communications, 1992, 187, 353-358.	2.1	38
72	Selective Peroxidation and Externalization of Phosphatidylserine in Normal Human Epidermal Keratinocytes During Oxidative Stress Induced by Cumene Hydroperoxide. Journal of Investigative Dermatology, 2002, 118, 1008-1018.	0.7	38

#	Article	IF	CITATIONS
73	Cytochrome c release is required for phosphatidylserine peroxidation during fas-triggered apoptosis in lung epithelial A549 cells. Lipids, 2004, 39, 1133-1142.	1.7	36
74	Reconstitution of Apo-Superoxide Dismutase by Nitric Oxide-Induced Copper Transfer from Metallothioneins. Chemical Research in Toxicology, 2000, 13, 922-931.	3.3	35
75	"Redox lipidomics technology: Looking for a needle in a haystack― Chemistry and Physics of Lipids, 2019, 221, 93-107.	3.2	35
76	"Only a Life Lived for Others Is Worth Living― Redox Signaling by Oxygenated Phospholipids in Cell Fate Decisions. Antioxidants and Redox Signaling, 2018, 29, 1333-1358.	5.4	33
77	Redox (phospho)lipidomics of signaling in inflammation and programmed cell death. Journal of Leukocyte Biology, 2019, 106, 57-81.	3.3	33
78	Glutamate-induced cytotoxicity in PC12 pheochromocytoma cells: role of oxidation of phospholipids, glutathione and protein sulfhydryls revealed by bcl-2 transfection. Molecular Brain Research, 1998, 60, 270-281.	2.3	31
79	TNFR1/Phox Interaction and TNFR1 Mitochondrial Translocation Thwart Silica-Induced Pulmonary Fibrosis. Journal of Immunology, 2014, 192, 3837-3846.	0.8	31
80	Antioxidant and Antiapoptotic Function of Metallothioneins in HL-60 Cells Challenged with Copper Nitrilotriacetate. Chemical Research in Toxicology, 2000, 13, 1275-1286.	3.3	30
81	Redox Sensor Function of Metallothioneins. Methods in Enzymology, 2002, 353, 268-281.	1.0	30
82	Ganglioside-dependent factor, inhibiting lipid peroxidation in rat brain synaptosomes. Neurochemistry International, 1992, 20, 401-407.	3.8	29
83	Selective oxidation and externalization of membrane phosphatidylserine: Bcl-2-induced potentiation of the final common pathway for apoptosis. Brain Research, 1999, 831, 125-130.	2.2	28
84	Peroxidase-Catalyzed Pro- versus Antioxidant Effects of 4-Hydroxytamoxifen:  Enzyme Specificity and Biochemical Sequelae. Chemical Research in Toxicology, 1999, 12, 28-37.	3.3	28
85	Surface-Binding to Cardiolipin Nanodomains Triggers Cytochrome c Pro-apoptotic Peroxidase Activity via Localized Dynamics. Structure, 2019, 27, 806-815.e4.	3.3	28
86	Mitochondria targeting of nonâ€peroxidizable triphenylphosphonium conjugated oleic acid protects mouse embryonic cells against apoptosis: Role of cardiolipin remodeling. FEBS Letters, 2012, 586, 235-241.	2.8	27
87	LC/MS characterization of rotenone induced cardiolipin oxidation in human lymphocytes: Implications for mitochondrial dysfunction associated with Parkinson's disease. Molecular Nutrition and Food Research, 2013, 57, 1410-1422.	3.3	27
88	Intraoral Mitochondrial-Targeted GS-Nitroxide, JP4-039, Radioprotects Normal Tissue in Tumor-Bearing Radiosensitive Fancd2–/– (C57BL/6) Mice. Radiation Research, 2016, 185, 134.	1.5	27
89	The cyclooxygenase site, but not the peroxidase site of cyclooxygenaseâ€2 is required for neurotoxicity in hypoxic and ischemic injury. Journal of Neurochemistry, 2010, 113, 965-977.	3.9	26
90	A Manganese–Porphyrin Complex Decomposes H ₂ O ₂ , Inhibits Apoptosis, and Acts as a Radiation Mitigator in Vivo. ACS Medicinal Chemistry Letters, 2011, 2, 814-817.	2.8	26

#	Article	lF	Citations
91	Molecular speciation and dynamics of oxidized triacylglycerols in lipid droplets: Mass spectrometry and coarse-grained simulations. Free Radical Biology and Medicine, 2014, 76, 53-60.	2.9	26
92	Nitric oxide-dependent pro-oxidant and pro-apoptotic effect of metallothioneins in HL-60 cells challenged with cupric nitrilotriacetate. Biochemical Journal, 2001, 354, 397.	3.7	25
93	Lipidomics Characterization of Biosynthetic and Remodeling Pathways of Cardiolipins in Genetically and Nutritionally Manipulated Yeast Cells. ACS Chemical Biology, 2017, 12, 265-281.	3.4	25
94	Specificity of Lipoprotein-Associated Phospholipase A ₂ toward Oxidized Phosphatidylserines: Liquid Chromatographyâ€"Electrospray Ionization Mass Spectrometry Characterization of Products and Computer Modeling of Interactions. Biochemistry, 2012, 51, 9736-9750.	2.5	23
95	Necroptosis triggers spatially restricted neutrophil-mediated vascular damage during lung ischemia reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2111537119.	7.1	23
96	Mitochondrial Redox Opto-Lipidomics Reveals Mono-Oxygenated Cardiolipins as Pro-Apoptotic Death Signals. ACS Chemical Biology, 2016, 11, 530-540.	3.4	22
97	Activation of NO donors in mitochondria: Peroxidase metabolism of (2â€hydroxyaminoâ€vinyl)â€triphenylâ€phosphonium by cytochrome ⟨i⟩c⟨ i⟩ releases NO and protects cells against apoptosis. FEBS Letters, 2008, 582, 725-728.	2.8	21
98	MISHANDLING OF COPPER BY ALBUMIN: ROLE IN REDOX-CYCLING AND OXIDATIVE STRESS IN PREECLAMPSIA PLASMA. Hypertension in Pregnancy, 2001, 20, 221-241.	1.1	20
99	Biosynthesis of oxidized lipid mediators via lipoprotein-associated phospholipase A ₂ hydrolysis of extracellular cardiolipin induces endothelial toxicity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L303-L316.	2.9	20
100	[30] Quantitation of S-nitrosothiols in cells and biological fluids. Methods in Enzymology, 2002, 352, 347-360.	1.0	19
101	Anti-/pro-oxidant effects of phenolic compounds in cells: are colchicine metabolites chain-breaking antioxidants?. Toxicology, 2002, 177, 105-117.	4.2	19
102	Ganglioside GM1 protects cAMP $3\hat{a} \in 2$: Phosphodiesterase from inactivation caused by lipid peroxidation in brain synaptosomes of rats. Molecular and Chemical Neuropathology, 1993, 19, 205-217.	1.0	18
103	Regeneration of lipophilic antioxidants by NAD(P)H:quinone oxidoreductase 1. Protoplasma, 2003, 221, 129-135.	2.1	18
104	Prevention of catecholaminergic oxidative toxicity by 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl and its recycling complex with polynitroxylated albumin, TEMPOL/PNA. Brain Research, 2004, 1012, 13-21.	2.2	17
105	Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1354-1368.	2.4	16
106	Peroxidase-catalyzed oxidation of \hat{i}^2 -carotene in HL-60 cells and in model systems: Involvement of phenoxyl radicals. Lipids, 1997, 32, 131-142.	1.7	15
107	Differential Membrane Antioxidant Effects of Immediate and Long-Term Estradiol Treatment of MCF-7 Breast Cancer Cells. Biochemical and Biophysical Research Communications, 1999, 260, 410-415.	2.1	15
108	Quinolizin-Coumarins as Physical Enhancers of Chemiluminescence during Lipid Peroxidation in Live HL-60 Cells. Archives of Biochemistry and Biophysics, 2000, 384, 154-162.	3.0	15

#	ARTICLE	IF	CITATIONS
109	Mass-spectrometric characterization of peroxidized and hydrolyzed lipids in plasma and dendritic cells of tumor-bearing animals. Biochemical and Biophysical Research Communications, 2011, 413, 149-153.	2.1	15
110	P. aeruginosa augments irradiation injury via 15-lipoxygenase–catalyzed generation of 15-HpETE-PE and induction of theft-ferroptosis. JCI Insight, 2022, 7, .	5.0	14
111	Amphotericin B as an intracellular antioxidant. Biochemical Pharmacology, 1997, 54, 937-945.	4.4	13
112	tert-butyl hydroperoxide/hemoglobin-induced oxidative stress and damage to vascular smooth muscle cells. Biochemical Pharmacology, 1999, 57, 989-1001.	4.4	11
113	[14] Peroxidation of phosphatidylserine in mechanisms of apoptotic signaling. Methods in Enzymology, 2002, 352, 159-174.	1.0	10
114	Title is missing!. Molecular and Cellular Biochemistry, 2002, 234/235, 125-133.	3.1	10
115	Quantification of Selective Phosphatidylserine Oxidation During Apoptosis. Methods in Molecular Biology, 2014, 1105, 603-611.	0.9	4
116	Corrigendum to "Activation of NO donors in mitochondria: Peroxidase metabolism of (2-hydroxyamino-vinyl)-triphenyl-phosphonium by cytochromecreleases NO and protects cells against apoptosis―[FEBS Lett. 582 (2008) 725-728]. FEBS Letters, 2008, 582, 1634-1634.	2.8	0