Brian S Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4058740/publications.pdf

Version: 2024-02-01

361413 526287 2,584 27 20 27 h-index citations g-index papers 33 33 33 4647 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes and Development, 2006, 20, 1470-1484.	5.9	652
2	Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification. Neuron, 2019, 102, 1111-1126.e5.	8.1	343
3	Single-Cell Analysis of Human Retina Identifies Evolutionarily Conserved and Species-Specific Mechanisms Controlling Development. Developmental Cell, 2020, 53, 473-491.e9.	7.0	170
4	Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Frontiers in Genetics, 2014, 5, 164.	2.3	145
5	Yap and Taz regulate retinal pigment epithelial cell fate. Development (Cambridge), 2015, 142, 3021-32.	2.5	123
6	Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species. Cell Systems, 2019, 8, 395-411.e8.	6.2	121
7	JD induced pluripotent stem cell-derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology, 2012, 56, 2163-2171.	7.3	120
8	Generation of Rabâ€based transgenic lines for <i>in vivo</i> studies of endosome biology in zebrafish. Developmental Dynamics, 2011, 240, 2452-2465.	1.8	97
9	<i>Evf2 lncRNA</i> /BRG1/DLX1 interactions reveal RNA-dependent chromatin remodeling inhibition. Development (Cambridge), 2015, 142, 2641-52.	2.5	84
10	Lhx2 Is an Essential Factor for Retinal Gliogenesis and Notch Signaling. Journal of Neuroscience, 2016, 36, 2391-2405.	3.6	79
11	Loss of Llgl1 in retinal neuroepithelia reveals links between apical domain size, Notch activity and neurogenesis. Development (Cambridge), 2012, 139, 1599-1610.	2.5	77
12	Comprehensive identification of mRNA isoforms reveals the diversity of neural cell-surface molecules with roles in retinal development and disease. Nature Communications, 2020, 11, 3328.	12.8	69
13	Mirror-symmetric microtubule assembly and cell interactions drive lumen formation in the zebrafish neural rod. EMBO Journal, 2012, 32, 30-44.	7.8	59
14	A toolbox of immunoprecipitation-grade monoclonal antibodies to human transcription factors. Nature Methods, 2018, 15, 330-338.	19.0	58
15	Gene regulatory networks controlling temporal patterning, neurogenesis, and cell-fate specification in mammalian retina. Cell Reports, 2021, 37, 109994.	6.4	52
16	ASCOT identifies key regulators of neuronal subtype-specific splicing. Nature Communications, 2020, 11, 137.	12.8	50
17	Understanding the Role of IncRNAs in Nervous System Development. Advances in Experimental Medicine and Biology, 2017, 1008, 253-282.	1.6	42
18	Atoh7-independent specification of retinal ganglion cell identity. Science Advances, 2021, 7, .	10.3	41

#	ARTICLE	IF	CITATIONS
19	Integrin $\hat{1}\pm5/\text{fibronectin1}$ and focal adhesion kinase are required for lens fiber morphogenesis in zebrafish. Molecular Biology of the Cell, 2012, 23, 4725-4738.	2.1	36
20	Multiple intrinsic factors act in concert with Lhx2 to direct retinal gliogenesis. Scientific Reports, 2016, 6, 32757.	3. 3	32
21	Ldb1 and Rnf12-dependent regulation of Lhx2 controls the relative balance between neurogenesis and gliogenesis in retina. Development (Cambridge), 2018, 145, .	2.5	25
22	A Casz1â€"NuRD complex regulates temporal identity transitions in neural progenitors. Scientific Reports, 2021, 11, 3858.	3.3	18
23	A single-cell guide to retinal development: Cell fate decisions of multipotent retinal progenitors in scRNA-seq. Developmental Biology, 2021, 478, 41-58.	2.0	17
24	Control of lens development by Lhx2-regulated neuroretinal FGFs. Development (Cambridge), 2016, 143, 3994-4002.	2.5	16
25	Balanced Shh signaling is required for proper formation and maintenance of dorsal telencephalic midline structures. BMC Developmental Biology, 2010, 10, 118.	2.1	14
26	SHH E176/E177-Zn2+ conformation is required for signaling at endogenous sites. Developmental Biology, 2017, 424, 221-235.	2.0	10
27	Zeb2 regulates the balance between retinal interneurons and MÃ1⁄4ller glia by inhibition of BMP–Smad signaling. Developmental Biology, 2020, 468, 80-92.	2.0	5