Brian B Haab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4057512/publications.pdf

Version: 2024-02-01

92 papers 7,600 citations

38 h-index 86 g-index

97 all docs 97
docs citations

97 times ranked 7598 citing authors

#	Article	IF	CITATIONS
1	CarboGrove: a resource of glycan-binding specificities through analyzed glycan-array datasets from all platforms. Glycobiology, 2022, 32, 679-690.	2.5	4
2	Detection of Chemotherapy-resistant Pancreatic Cancer Using a Glycan Biomarker, sTRA. Clinical Cancer Research, 2021, 27, 226-236.	7.0	15
3	Imaging Mass Spectrometry and Lectin Analysis of N-Linked Glycans in Carbohydrate Antigen–Defined Pancreatic Cancer Tissues. Molecular and Cellular Proteomics, 2021, 20, 100012.	3.8	57
4	Combined Analysis of Multiple Glycan-Array Datasets: New Explorations of Protein–Glycan Interactions. Analytical Chemistry, 2021, 93, 10925-10933.	6.5	10
5	Biomarkers and Strategy to Detect Preinvasive and Early Pancreatic Cancer: State of the Field and the Impact of the EDRN. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2513-2523.	2.5	9
6	Automated Identification of Lectin Fine Specificities from Glycan-Array Data. ACS Symposium Series, 2020, , 67-82.	0.5	4
7	Advances in Tools to Determine the Glycan-Binding Specificities of Lectins and Antibodies. Molecular and Cellular Proteomics, 2020, 19, 224-232.	3 . 8	30
8	A Novel Mass Spectrometry Platform for Multiplexed N-Glycoprotein Biomarker Discovery from Patient Biofluids by Antibody Panel Based N-Glycan Imaging. Analytical Chemistry, 2019, 91, 8429-8435.	6.5	38
9	Automated Identification and Quantification of Signals in Multichannel Immunofluorescence Images. American Journal of Pathology, 2019, 189, 1402-1412.	3.8	8
10	The sTRA Plasma Biomarker: Blinded Validation of Improved Accuracy Over CA19-9 in Pancreatic Cancer Diagnosis. Clinical Cancer Research, 2019, 25, 2745-2754.	7.0	32
11	Deciphering Protein Glycosylation by Computational Integration of On-chip Profiling, Glycan-array Data, and Mass Spectrometry. Molecular and Cellular Proteomics, 2019, 18, 28-40.	3.8	15
12	Mining High-Complexity Motifs in Glycans: A New Language To Uncover the Fine Specificities of Lectins and Glycosidases. Analytical Chemistry, 2017, 89, 12342-12350.	6.5	28
13	The CA19-9 and Sialyl-TRA Antigens Define Separate Subpopulations of Pancreatic Cancer Cells. Scientific Reports, 2017, 7, 4020.	3.3	17
14	A Gastric Clycoform of MUC5AC Is a Biomarker of Mucinous Cysts of the Pancreas. PLoS ONE, 2016, 11, e0167070.	2.5	24
15	Characterizing Protein Glycosylation through On-Chip Glycan Modification and Probing. Analytical Chemistry, 2016, 88, 11584-11592.	6.5	13
16	Multiplexed autoantigen microarrays identify HLA as a key driver of anti-desmoglein and -non-desmoglein reactivities in pemphigus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1859-1864.	7.1	50
17	Glycans Related to the CA19-9 Antigen Are Increased in Distinct Subsets of Pancreatic Cancers and Improve Diagnostic Accuracy Over CA19-9. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 210-221.e15.	4.5	33
18	Mining and Using Glycan Array Data with the GlycoSearch Analysis Program and GlycanBinder Database., 2015,, 61-68.		2

#	Article	IF	Citations
19	The Detection and Discovery of Glycan Motifs in Biological Samples Using Lectins and Antibodies: New Methods and Opportunities. Advances in Cancer Research, 2015, 126, 167-202.	5.0	30
20	Glycan Motif Profiling Reveals Plasma Sialyl-Lewis X Elevations in Pancreatic Cancers That Are Negative for Sialyl-Lewis A *. Molecular and Cellular Proteomics, 2015, 14, 1323-1333.	3.8	34
21	Upregulation of Glycans Containing 3′ Fucose in a Subset of Pancreatic Cancers Uncovered Using Fusion-Tagged Lectins. Journal of Proteome Research, 2015, 14, 2594-2605.	3.7	24
22	Segment and Fit Thresholding: A New Method for Image Analysis Applied to Microarray and Immunofluorescence Data. Analytical Chemistry, 2015, 87, 9715-9721.	6.5	20
23	Exploring the Specificities of Glycan-Binding Proteins Using Glycan Array Data and the GlycoSearch Software. Methods in Molecular Biology, 2015, 1273, 203-214.	0.9	7
24	Definitive Characterization of CA 19-9 in Resectable Pancreatic Cancer Using a Reference Set of Serum and Plasma Specimens. PLoS ONE, 2015, 10, e0139049.	2. 5	31
25	MALDI Imaging Mass Spectrometry Profiling of N-Glycans in Formalin-Fixed Paraffin Embedded Clinical Tissue Blocks and Tissue Microarrays. PLoS ONE, 2014, 9, e106255.	2.5	198
26	Detection of distinct glycosylation patterns on human \hat{l}^3 -glutamyl transpeptidase 1 using antibody-lectin sandwich array (ALSA) technology. BMC Biotechnology, 2014, 14, 101.	3.3	6
27	Mesenchymalâ€like pancreatic cancer cells harbor specific genomic alterations more frequently than their epithelialâ€like counterparts. Molecular Oncology, 2014, 8, 1253-1265.	4.6	8
28	Characterization of Glycoproteins in Pancreatic Cyst Fluid Using a High-Performance Multiple Lectin Affinity Chromatography Platform. Journal of Proteome Research, 2014, 13, 289-299.	3.7	25
29	Mining and Using Glycan Array Data with the GlycoSearch Analysis Program and GlycanBinder Database. , 2014, , 1-7.		0
30	The developing schistosome worms elicit distinct immune responses in different tissue regions. Immunology and Cell Biology, 2013, 91, 477-485.	2.3	22
31	Modulation of Glycan Detection on Specific Glycoproteins by Lectin Multimerization. Analytical Chemistry, 2013, 85, 1689-1698.	6.5	21
32	Using Antibody Arrays to Measure Protein Abundance and Glycosylation: Considerations for Optimal Performance. Current Protocols in Protein Science, 2013, 73, 27.6.1-27.6.16.	2.8	8
33	Specific Glycoforms of MUC5AC and Endorepellin Accurately Distinguish Mucinous from Nonmucinous Pancreatic Cysts. Molecular and Cellular Proteomics, 2013, 12, 2724-2734.	3.8	33
34	Global Comparisons of Lectin–Glycan Interactions Using a Database of Analyzed Glycan Array Data. Molecular and Cellular Proteomics, 2013, 12, 1026-1035.	3.8	42
35	Prediction of glycan motifs using quantitative analysis of multiâ€lectin binding: <scp>M</scp> otifs on <scp>MUC</scp> 1 produced by cultured pancreatic cancer cells. Proteomics - Clinical Applications, 2013, 7, 632-641.	1.6	13
36	The Marker State Space (MSS) Method for Classifying Clinical Samples. PLoS ONE, 2013, 8, e65905.	2.5	6

#	Article	IF	Citations
37	Determining Lectin Specificity from Glycan Array Data Using Motif Segregation and GlycoSearch Software. Current Protocols in Chemical Biology, 2013, 5, 157-169.	1.7	19
38	Chemically-blocked Antibody Microarray for Multiplexed High-throughput Profiling of Specific Protein Glycosylation in Complex Samples. Journal of Visualized Experiments, 2012, , e3791.	0.3	3
39	The fine specificity of mannose-binding and galactose-binding lectins revealed using outlier motif analysis of glycan array data. Glycobiology, 2012, 22, 160-169.	2.5	73
40	Using lectins in biomarker research: Addressing the limitations of sensitivity and availability. Proteomics - Clinical Applications, 2012, 6, 346-350.	1.6	31
41	Comparison of Surgical and Endoscopic Sample Collection for Pancreatic Cyst Fluid Biomarker Identification. Journal of Proteome Research, 2012, 11, 2904-2911.	3.7	8
42	Diverse monoclonal antibodies against the $\langle scp \rangle CA \langle scp \rangle$ 19â $\in 9$ antigen show variation in binding specificity with consequences for clinical interpretation. Proteomics, 2012, 12, 2212-2220.	2.2	43
43	Enhanced Discrimination of Malignant from Benign Pancreatic Disease by Measuring the CA 19-9 Antigen on Specific Protein Carriers. PLoS ONE, 2011, 6, e29180.	2.5	61
44	Identification of bloodâ€protein carriers of the CA 19â€9 antigen and characterization of prevalence in pancreatic diseases. Proteomics, 2011, 11, 3665-3674.	2.2	54
45	High-Throughput Studies of Protein Glycoforms Using Antibody–Lectin Sandwich Arrays. Methods in Molecular Biology, 2011, 785, 223-236.	0.9	22
46	Glycosylation Variants of Mucins and CEACAMs As Candidate Biomarkers for the Diagnosis of Pancreatic Cystic Neoplasms. Annals of Surgery, 2010, 251, 937-945.	4.2	83
47	Heat Treatment of Milk During Powder Manufacture Increases Casein Resistance to Simulated Infant Digestion. Food Digestion, 2010, 1, 28-39.	0.9	38
48	The development of an integrated platform to identify breast cancer glycoproteome changes in human serum. Journal of Chromatography A, 2010, 1217, 3307-3315.	3.7	40
49	Glycogene Expression Alterations Associated with Pancreatic Cancer Epithelial-Mesenchymal Transition in Complementary Model Systems. PLoS ONE, 2010, 5, e13002.	2,5	110
50	Antibody-Array Interaction Mapping, a New Method to Detect Protein Complexes Applied to the Discovery and Study of Serum Amyloid P Interactions with Kininogen in Human Plasma. Molecular and Cellular Proteomics, 2010, 9, 446-456.	3.8	14
51	A motif-based analysis of glycan array data to determine the specificities ofÂglycan-binding proteins. Glycobiology, 2010, 20, 369-380.	2.5	69
52	Antibody–lectin sandwich arrays for biomarker and glycobiology studies. Expert Review of Proteomics, 2010, 7, 9-11.	3.0	36
53	Applications of Antibody-Lectin Sandwich Arrays (ALSA) to Pancreatic Cancer Diagnostics and Drug Discovery., 2010,, 243-269.		0
54	Comprehensive Proteome Analysis of an Apc Mouse Model Uncovers Proteins Associated with Intestinal Tumorigenesis. Cancer Prevention Research, 2009, 2, 224-233.	1.5	47

#	Article	IF	CITATIONS
55	The Prevalence and Nature of Glycan Alterations on Specific Proteins in Pancreatic Cancer Patients Revealed Using Antibody-Lectin Sandwich Arrays. Molecular and Cellular Proteomics, 2009, 8, 1697-1707.	3.8	114
56	Microarrays in Glycoproteomics Research. Clinics in Laboratory Medicine, 2009, 29, 15-29.	1.4	39
57	Analysis of Glycans on Serum Proteins Using Antibody Microarrays. Methods in Molecular Biology, 2009, 520, 39-58.	0.9	22
58	Mucin Glycosylation Is Altered by Pro-Inflammatory Signaling in Pancreatic-Cancer Cells. Journal of Proteome Research, 2009, 8, 1876-1886.	3.7	70
59	Low-volume, high-throughput sandwich immunoassays for profiling plasma proteins in mice: Identification of early-stage systemic inflammation in a mouse model of intestinal cancer. Molecular Oncology, 2007, 1, 216-225.	4.6	33
60	An experimental strategy for quantitative analysis of the humoral immune response to prostate cancer antigens using natural protein microarrays. Proteomics - Clinical Applications, 2007, 1, 494-505.	1.6	3
61	Antibody array profiling reveals serum TSPâ€1 as a marker to distinguish benign from malignant prostatic disease. Prostate, 2007, 67, 255-267.	2.3	75
62	Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nature Methods, 2007, 4, 437-444.	19.0	225
63	The Human Plasma and Serum Proteome. , 2007, , 195-224.		7
64	Profiling Bladder Cancer Using Targeted Antibody Arrays. American Journal of Pathology, 2006, 168, 93-103.	3.8	162
65	Applications of antibody array platforms. Current Opinion in Biotechnology, 2006, 17, 415-421.	6.6	171
66	Mass Spectrometry-Based Study of the Plasma Proteome in a Mouse Intestinal Tumor Model. Journal of Proteome Research, 2006, 5, 1866-1878.	3.7	35
67	RCA-Enhanced Protein Detection Arrays. , 2006, 328, 15-30.		9
68	Methods of comparative proteomic profiling for disease diagnostics. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 815, 275-284.	2.3	43
69	Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis. BMC Cancer, 2005, 5, 110.	2.6	149
70	HUPO Plasma Proteome Project specimen collection and handling: Towards the standardization of parameters for plasma proteome samples. Proteomics, 2005, 5, 3262-3277.	2.2	515
71	Immunoassay and antibody microarray analysis of the HUPO Plasma Proteome Project reference specimens: Systematic variation between sample types and calibration of mass spectrometry data. Proteomics, 2005, 5, 3278-3291.	2,2	150
72	Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publiclyâ€available database. Proteomics, 2005, 5, 3226-3245.	2.2	766

#	Article	IF	CITATIONS
73	Antibody Arrays in Cancer Research. Molecular and Cellular Proteomics, 2005, 4, 377-383.	3.8	209
74	Optimized Normalization for Antibody Microarrays and Application to Serum-Protein Profiling. Molecular and Cellular Proteomics, 2005, 4, 773-784.	3.8	102
75	Multiplexed Protein Analysis Using Antibody Microarrays and Label-Based Detection. , 2005, 114, 183-194.		8
76	Antibody Microarray Profiling Reveals Individual and Combined Serum Proteins Associated with Pancreatic Cancer. Cancer Research, 2005, 65, 11193-11202.	0.9	141
77	Multiplexed Protein Analysis Using Spotted Antibody Microarrays. , 2004, 264, 033-046.		18
78	Development of Natural Protein Microarrays for Diagnosing Cancer Based on an Antibody Response to Tumor Antigens. Journal of Proteome Research, 2004, 3, 261-267.	3.7	127
79	Oltipraz, 3H-1,2-dithiole-3-thione, and sulforaphane induce overlapping and protective antioxidant responses in murine microglial cells. Toxicology Letters, 2004, 153, 343-355.	0.8	28
80	Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements. Genome Biology, 2004, 5, R28.	9.6	128
81	Molecular Profiling of Human Hepatocellular Carcinoma Defines Mutually Exclusive Interferon Regulation and Insulin-Like Growth Factor II Overexpression. Cancer Research, 2004, 64, 6058-6064.	0.9	119
82	Combined genetic and transcriptional profiling of acute myeloid leukemia with normal and complex karyotypes. Haematologica, 2004, 89, 1072-81.	3.5	22
83	Methods and applications of antibody microarrays in cancer research. Proteomics, 2003, 3, 2116-2122.	2.2	213
84	Microarrays of tumor cell derived proteins uncover a distinct pattern of prostate cancer serum immunoreactivity. Proteomics, 2003, 3, 2200-2207.	2.2	85
85	Antibody microarray profiling of human prostate cancer sera: Antibody screening and identification of potential biomarkers. Proteomics, 2003, 3, 56-63.	2.2	394
86	Autoantigen microarrays for multiplex characterization of autoantibody responses. Nature Medicine, 2002, 8, 295-301.	30.7	693
87	Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biology, 2001, 2, RESEARCH0004.	9.6	692
88	The Application of Protein Microarrays to Serum Diagnostics: Prostate Cancer as a Test Case. Disease Markers, 2001, 17, 225-234.	1.3	33
89	Advances in protein microarray technology for protein expression and interaction profiling. Current Opinion in Drug Discovery & Development, 2001, 4, 116-23.	1.9	15
90	Single-Molecule Detection of DNA Separations in Microfabricated Capillary Electrophoresis Chips Employing Focused Molecular Streams. Analytical Chemistry, 1999, 71, 5137-5145.	6.5	134

#	Article	IF	CITATIONS
91	Optimization of Single-Molecule Fluorescence Burst Detection of ds-DNA: Application to Capillary Electrophoresis Separations of 100–1000 Basepair Fragments. Applied Spectroscopy, 1997, 51, 1579-1584.	2.2	16
92	Single molecule fluorescence burst detection of DNA fragments separated by capillary electrophoresis. Analytical Chemistry, 1995, 67, 3253-3260.	6.5	95