List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/405704/publications.pdf Version: 2024-02-01

<u> Ρινλι ι Βηλνιλ</u>

#	Article	IF	CITATIONS
1	A triazine-based covalent organic polymer for efficient CO ₂ adsorption. Chemical Communications, 2015, 51, 10050-10053.	4.1	248
2	Catalytic reduction of CO ₂ into fuels and fine chemicals. Green Chemistry, 2020, 22, 4002-4033.	9.0	162
3	Porous Organic Polymers for CO ₂ Storage and Conversion Reactions. ChemCatChem, 2019, 11, 244-257.	3.7	153
4	A New Triazineâ€Based Covalent Organic Framework for Highâ€Performance Capacitive Energy Storage. ChemSusChem, 2017, 10, 921-929.	6.8	132
5	Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: Efficient electrocatalysts for oxygen evolution reaction. Chemical Engineering Journal, 2021, 405, 126803.	12.7	112
6	Porous nanomaterials as green catalyst for the conversion of biomass to bioenergy. Fuel, 2016, 185, 432-441.	6.4	108
7	Supported Porous Nanomaterials as Efficient Heterogeneous Catalysts for CO ₂ Fixation Reactions. Chemistry - A European Journal, 2018, 24, 7278-7297.	3.3	107
8	Facile Synthesis of Nanoporous Transition Metalâ€Based Phosphates for Oxygen Evolution Reaction. ChemCatChem, 2020, 12, 2091-2096.	3.7	106
9	Bifunctionalized Mesoporous SBA-15: A New Heterogeneous Catalyst for the Facile Synthesis of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2017, 5, 2763-2773.	6.7	92
10	Nanoarchitectured Metal Phosphates and Phosphonates: A New Material Horizon toward Emerging Applications. Chemistry of Materials, 2019, 31, 5343-5362.	6.7	87
11	IrO ₂ and Pt Doped Mesoporous SnO ₂ Nanospheres as Efficient Electrocatalysts for the Facile OER and HER. ChemCatChem, 2019, 11, 583-592.	3.7	82
12	Pd Nanoparticles Decorated on Hypercrosslinked Microporous Polymer: A Highly Efficient Catalyst for the Formylation of Amines through Carbon Dioxide Fixation. ChemCatChem, 2017, 9, 1939-1946.	3.7	79
13	Covalent Organic Framework Material Bearing Phloroglucinol Building Units as a Potent Anticancer Agent. ACS Applied Materials & Interfaces, 2017, 9, 31411-31423.	8.0	78
14	A New Porous Polymer for Highly Efficient Capacitive Energy Storage. ACS Sustainable Chemistry and Engineering, 2018, 6, 202-209.	6.7	78
15	Role of Surface Phenolic-OH Groups in N-Rich Porous Organic Polymers for Enhancing the CO ₂ Uptake and CO ₂ /N ₂ Selectivity: Experimental and Computational Studies. ACS Applied Materials & Interfaces, 2018, 10, 23813-23824.	8.0	74
16	Magnesium oxide as an efficient catalyst for CO 2 fixation and N-formylation reactions under ambient conditions. Molecular Catalysis, 2018, 450, 46-54.	2.0	63
17	Functionalized graphene oxide as an efficient adsorbent for CO ₂ capture and support for heterogeneous catalysis. RSC Advances, 2016, 6, 72055-72068.	3.6	58
18	Novel porous metal phosphonates as efficient electrocatalysts for the oxygen evolution reaction. Chemical Engineering Journal, 2020, 396, 125245.	12.7	54

#	Article	IF	CITATIONS
19	Morphologically controlled cobalt oxide nanoparticles for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2021, 582, 322-332.	9.4	51
20	Rapid template-free synthesis of an air-stable hierarchical copper nanoassembly and its use as a reusable catalyst for 4-nitrophenol reduction. RSC Advances, 2015, 5, 101519-101524.	3.6	45
21	Organic–Inorganic Hybrid Metal Phosphonates as Recyclable Heterogeneous Catalysts. ChemCatChem, 2016, 8, 1607-1616.	3.7	45
22	A new chiral Fe(<scp>iii</scp>)–salen grafted mesoporous catalyst for enantioselective asymmetric ring opening of racemic epoxides at room temperature under solvent-free conditions. Chemical Communications, 2016, 52, 1871-1874.	4.1	45
23	Metforminâ€Templated Nanoporous ZnO and Covalent Organic Framework Heterojunction Photoanode for Photoelectrochemical Water Oxidation. ChemSusChem, 2021, 14, 408-416.	6.8	45
24	New Hybrid Iron Phosphonate Material as an Efficient Catalyst for the Synthesis of Adipic Acid in Air and Water. ACS Sustainable Chemistry and Engineering, 2016, 4, 7147-7157.	6.7	44
25	Sulfonated porous organic polymer as a highly efficient catalyst for the synthesis of biodiesel at room temperature. Journal of Molecular Catalysis A, 2016, 411, 110-116.	4.8	44
26	Functionalized porous organic materials as efficient media for the adsorptive removal of Hg(<scp>ii</scp>) ions. Environmental Science: Nano, 2020, 7, 2887-2923.	4.3	44
27	Crystalline Porous Organic Polymer Bearing â^'SO ₃ H Functionality for High Proton Conductivity. ACS Sustainable Chemistry and Engineering, 2020, 8, 2423-2432.	6.7	43
28	Palladium nanoparticles embedded on mesoporous TiO2 material (Pd@MTiO2) as an efficient heterogeneous catalyst for Suzuki-Coupling reactions in water medium. Journal of Colloid and Interface Science, 2017, 508, 378-386.	9.4	42
29	Metalâ€Free Triazineâ€Based 2D Covalent Organic Framework for Efficient H ₂ Evolution by Electrochemical Water Splitting. ChemSusChem, 2021, 14, 5057-5064.	6.8	42
30	Porous iron-phosphonate nanomaterial as an efficient catalyst for the CO 2 fixation at atmospheric pressure and esterification of biomass-derived levulinic acid. Catalysis Today, 2018, 309, 253-262.	4.4	41
31	Ag nanoparticle-decorated, ordered mesoporous silica as an efficient electrocatalyst for alkaline water oxidation reaction. Dalton Transactions, 2019, 48, 2220-2227.	3.3	40
32	Palladium nanoparticles embedded over mesoporous TiO ₂ for chemical fixation of CO ₂ under atmospheric pressure and solvent-free conditions. New Journal of Chemistry, 2017, 41, 12937-12946.	2.8	39
33	An efficient mesoporous carbon nitride (g-C ₃ N ₄) functionalized Pd catalyst for carbon–carbon bond formation reactions. RSC Advances, 2016, 6, 49376-49386.	3.6	35
34	Porous organic–inorganic hybrid materials for catalysis, energy and environmental applications. Chemical Communications, 2022, 58, 3429-3460.	4.1	35
35	Silver nanoparticles supported over Al 2 O 3 @Fe 2 O 3 core-shell nanoparticles as an efficient catalyst for one-pot synthesis of 1,2,3-triazoles and acylation of benzyl alcohol. Molecular Catalysis, 2017, 439, 31-40.	2.0	34
36	Microporous Nanotubes and Nanospheres with Iron atechol Sites: Efficient Lewis Acid Catalyst and Support for Ag Nanoparticles in CO ₂ Fixation Reaction. Chemistry - A European Journal, 2018, 24, 14189-14197.	3.3	34

#	Article	IF	CITATIONS
37	An overview on advances in design and development of materials for electrochemical generation of hydrogen and oxygen. Materials Today Energy, 2022, 23, 100902.	4.7	33
38	Functionalized SBA-15 material with grafted CO2H group as an efficient heterogeneous acid catalyst for the fixation of CO2 on epoxides under atmospheric pressure. Molecular Catalysis, 2017, 434, 25-31.	2.0	29
39	Triazine containing N-rich microporous organic polymers for CO 2 capture and unprecedented CO 2 /N 2 selectivity. Journal of Solid State Chemistry, 2017, 247, 113-119.	2.9	29
40	Plasmonic gold deposited on mesoporous Ti Si1â^'O2 with isolated silica in lattice: An excellent photocatalyst for photocatalytic conversion of CO2 into methanol under visible light irradiation. Journal of CO2 Utilization, 2018, 27, 11-21.	6.8	28
41	Triazineâ€Based Porous Organic Polymer with Good CO ₂ Gas Adsorption Properties and an Efficient Organocatalyst for the Oneâ€Pot Multicomponent Condensation Reaction. ChemCatChem, 2016, 8, 3089-3098.	3.7	27
42	Influence of Indium as a Promoter on the Stability and Selectivity of the Nanocrystalline Cu/CeO ₂ Catalyst for CO ₂ Hydrogenation to Methanol. ACS Applied Materials & Interfaces, 2021, 13, 28201-28213.	8.0	27
43	A new Cu-anchored mesoporous organosilica material for facile C–S coupling reactions under microwave irradiation. Journal of Molecular Catalysis A, 2016, 415, 104-112.	4.8	24
44	Chiral Co(<scp>iii</scp>)–salen complex supported over highly ordered functionalized mesoporous silica for enantioselective aminolysis of racemic epoxides. RSC Advances, 2016, 6, 109315-109321.	3.6	23
45	Pt and Pd Nanoparticles Immobilized on Amine-Functionalized Hypercrosslinked Porous Polymer Nanotubes as Selective Hydrogenation Catalyst for α,β-Unsaturated Aldehydes. ChemistrySelect, 2017, 2, 7535-7543.	1.5	23
46	Pt Nanoparticles Supported over Porous Porphyrin Nanospheres for Chemoselective Hydrogenation Reactions. ChemCatChem, 2019, 11, 1977-1985.	3.7	23
47	Silver nanoparticles supported over mesoporous alumina as an efficient nanocatalyst for N-alkylation of hetero (aromatic) amines and aromatic amines using alcohols as alkylating agent. Journal of Colloid and Interface Science, 2017, 493, 206-217.	9.4	21
48	NASICON type ordered mesoporous lithium-aluminum-titanium-phosphate as electrode materials for lithium-ion batteries. Microporous and Mesoporous Materials, 2017, 240, 57-64.	4.4	20
49	Pd NP-Decorated N-Rich Porous Organic Polymer as an Efficient Catalyst for Upgradation of Biofuels. ACS Omega, 2018, 3, 7639-7647.	3.5	19
50	Chiral copper-salen complex grafted over functionalized mesoporous silica as an efficient catalyst for asymmetric Henry reactions and synthesis of the potent drug (<i>R</i>)-isoproterenol. New Journal of Chemistry, 2018, 42, 11896-11904.	2.8	19
51	Porous Polymer Bearing Polyphenolic Organic Building Units as a Chemotherapeutic Agent for Cancer Treatment. ACS Omega, 2018, 3, 529-535.	3.5	18
52	Highly efficient Au hollow nanosphere catalyzed chemo-selective oxidation of alcohols. Journal of Molecular Catalysis A, 2016, 411, 87-94.	4.8	16
53	Iron phosphide anchored nanoporous carbon as an efficient electrode for supercapacitors and the oxygen reduction reaction. RSC Advances, 2019, 9, 25240-25247.	3.6	16
54	N-rich porous organic polymer with suitable donor–donor–acceptor functionality for the sensing of nucleic acid bases and CO ₂ storage application. RSC Advances, 2015, 5, 74916-74923.	3.6	15

#	Article	IF	CITATIONS
55	Novel Microporous Iron-Embedded Cobalt Phosphonates Feasible for Electrochemical Overall Water Splitting. ACS Applied Energy Materials, 2022, 5, 3558-3567.	5.1	15
56	Micelle-templated synthesis of Pt hollow nanospheres for catalytic hydrogen evolution. RSC Advances, 2016, 6, 11370-11377.	3.6	14
57	Synthesis of middle distillate through low temperature Fischer-Tropsch (LTFT) reaction over mesoporous SDA supported cobalt catalysts using syngas equivalent to coal gasification. Applied Catalysis A: General, 2018, 557, 55-63.	4.3	14
58	Zeolite‥â€Mediated Multicomponent Reaction of Isatins, Cyclic 1,3â€Diketones, and 1,2â€Phenylenediamine: Easy Access to Spirodibenzo[1,4]diazepines. ChemCatChem, 2018, 10, 590-600.	3.7	14
59	A new microporous oxyfluorinated titanium(IV) phosphate as an efficient heterogeneous catalyst for the selective oxidation of cyclohexanone. Journal of Colloid and Interface Science, 2018, 511, 92-100.	9.4	13
60	A Sulfonated Porous Polymer as Solid Acid Catalyst for Biofuel Synthesis and Chemical Fixation of CO 2. ChemistrySelect, 2019, 4, 14315-14328.	1.5	13
61	Novel Microporous Metal Phosphonates as Electrocatalyst for the Electrochemical Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 12827-12835.	5.1	13
62	Ordered mesoporous γ-Al 2 O 3 as highly efficient and recyclable catalyst for the Knoevenagel reaction at room temperature. Molecular Catalysis, 2018, 451, 220-227.	2.0	12
63	The design and synthesis of heterogeneous catalysts for environmental applications. Dalton Transactions, 2021, 50, 4765-4771.	3.3	12
64	MnAPO-5 as an efficient heterogeneous catalyst for selective liquid phase partial oxidation reactions. Dalton Transactions, 2018, 47, 791-798.	3.3	10
65	An ExpeditiousSynthesis of Spiro[chromeno[2,3-c]pyrazole-4,3′-indolin]-2′5-diones Catalysed by RecyclableSpinel ZnFe ₂ O ₄ Nanopowder. ChemistrySelect, 2017, 2, 4857-4865.	1.5	9
66	Materials with Nanoscale Porosity: Energy and Environmental Applications. Chemical Record, 2019, 19, 333-346.	5.8	9
67	Porous organic polymer as an efficient organocatalyst for the synthesis of biofuel ethyl levulinate. Molecular Catalysis, 2020, 494, 111119.	2.0	9
68	Novel microporous organic-inorganic hybrid metal phosphonates as electrocatalysts towards water oxidation reaction. Electrochimica Acta, 2022, 416, 140277.	5.2	9
69	A new recyclable functionalized mesoporous SBA-15 catalyst grafted with chiral Fe(<scp>iii</scp>) sites for the enantioselective aminolysis of racemic epoxides under solvent free conditions. RSC Advances, 2016, 6, 97599-97605.	3.6	8
70	Chiral Cr(III)-salen complex embedded over sulfonic acid functionalized mesoporous SBA-15 material as an efficient catalyst for the asymmetric Henry reaction. Molecular Catalysis, 2019, 475, 110489.	2.0	8
71	Understanding the Origin of Structure Sensitivity in Nano Crystalline Mixed Cu/Mgâ^'Al Oxides Catalyst for Lowâ€Pressure Methanol Synthesis. ChemCatChem, 2021, 13, 3290-3302.	3.7	8
72	Acid-Functionalized Mesoporous SBA-15 as an Efficient Heterogeneous Organocatalyst for the Green Synthesis of β-Amino Alcohol Derivatives. ChemistrySelect, 2017, 2, 2159-2165.	1.5	7

#	Article	IF	CITATIONS
73	Mesoporous Zirconium Oxophosphate: An Efficient Catalyst for the Synthesis of Cyclic Acetals and Cyclic Carbonates under Solventâ€Free Conditions. ChemistrySelect, 2017, 2, 10595-10602.	1.5	7
74	Serendipitous Observation of Liquidâ€Phase Size Selectivity inside a Mesoporous Silica Nanoreactor in the Reaction of Chromene with Formic Acid. ChemCatChem, 2018, 10, 2260-2270.	3.7	7
75	High proton conductivity in a charge carrier-induced Ni(<scp>ii</scp>) metal–organic framework. New Journal of Chemistry, 2022, 46, 1867-1876.	2.8	7
76	Bifunctional crystalline microporous organic polymers: Efficient heterogeneous catalysts for the synthesis of 5-hydroxymethylfurfural. Molecular Catalysis, 2021, 515, 111877.	2.0	6
77	Functionalized Porous Nanomaterials as Efficient Heterogeneous Catalyst for Eco-Friendly Organic Transformations. Journal of Nanoscience and Nanotechnology, 2016, 16, 9050-9062.	0.9	5
78	A magnetically recoverable nanocatalyst based on functionalized mesoporous silica. Journal of Molecular Catalysis A, 2016, 415, 17-26.	4.8	5
79	A Highly Ordered N-Rich Functionalized Mesoporous Material for CO ₂ Storage Application. Journal of Nanoscience and Nanotechnology, 2016, 16, 9223-9230.	0.9	4
80	New microporous nickel phosphonate derivatives N, P-codoped nickel oxides and N, O-codoped nickel phosphides: Potential electrocatalysts for water oxidation. Catalysis Today, 2023, 424, 113771.	4.4	4
81	Newly designed microporous organic-inorganic hybrid cobalt phosphonate for hydrogen evolution reaction. Catalysis Today, 2023, 424, 113789.	4.4	4
82	Lithium embedded hierarchically porous aluminium phosphonate as anode material for lithium-polymer battery. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 274, 115490.	3.5	2
83	Frontispiece: Supported Porous Nanomaterials as Efficient Heterogeneous Catalysts for CO ₂ Fixation Reactions. Chemistry - A European Journal, 2018, 24, .	3.3	0