
Xiuxia Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4056508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One Step Forward for Reducing False Positive and False Negative Compound Identifications from Mass Spectrometry Metabolomics Data: New Algorithms for Constructing Extracted Ion Chromatograms and Detecting Chromatographic Peaks. Analytical Chemistry, 2017, 89, 8696-8703.	6.5	275
2	Detailed Investigation and Comparison of the XCMS and MZmine 2 Chromatogram Construction and Chromatographic Peak Detection Methods for Preprocessing Mass Spectrometry Metabolomics Data. Analytical Chemistry, 2017, 89, 8689-8695.	6.5	146
3	Identification of Cross-Linked Peptides after Click-Based Enrichment Using Sequential Collision-Induced Dissociation and Electron Transfer Dissociation Tandem Mass Spectrometry. Analytical Chemistry, 2009, 81, 5524-5532.	6.5	91
4	Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nature Biotechnology, 2021, 39, 169-173.	17.5	78
5	Comparative Proteomics of Human Monkeypox and Vaccinia Intracellular Mature and Extracellular Enveloped Virions. Journal of Proteome Research, 2008, 7, 960-968.	3.7	75
6	ADAP-GC 2.0: Deconvolution of Coeluting Metabolites from GC/TOF-MS Data for Metabolomics Studies. Analytical Chemistry, 2012, 84, 6619-6629.	6.5	69
7	The PHD and Chromo Domains Regulate the ATPase Activity of the Human Chromatin Remodeler CHD4. Journal of Molecular Biology, 2012, 422, 3-17.	4.2	68
8	Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data. Journal of Mass Spectrometry, 2016, 51, 461-475.	1.6	64
9	ADAP-GC 3.0: Improved Peak Detection and Deconvolution of Co-eluting Metabolites from GC/TOF-MS Data for Metabolomics Studies. Analytical Chemistry, 2016, 88, 8802-8811.	6.5	63
10	An Automated Data Analysis Pipeline for GCâ	3.7	59
11	Xlink-Identifier: An Automated Data Analysis Platform for Confident Identifications of Chemically Cross-Linked Peptides Using Tandem Mass Spectrometry. Journal of Proteome Research, 2011, 10, 923-931.	3.7	55
12	SPECTRAL DECONVOLUTION FOR GAS CHROMATOGRAPHY MASS SPECTROMETRY-BASED METABOLOMICS: CURRENT STATUS AND FUTURE PERSPECTIVES. Computational and Structural Biotechnology Journal, 2013, 4, e201301013.	4.1	55
13	Training in metabolomics research. II. Processing and statistical analysis of metabolomics data, metabolite identification, pathway analysis, applications of metabolomics and its future. Journal of Mass Spectrometry, 2016, 51, 535-548.	1.6	49
14	ADAP-GC 4.0: Application of Clustering-Assisted Multivariate Curve Resolution to Spectral Deconvolution of Gas Chromatography–Mass Spectrometry Metabolomics Data. Analytical Chemistry, 2019, 91, 9069-9077.	6.5	44
15	Linear Discriminant Analysis-Based Estimation of the False Discovery Rate for Phosphopeptide Identifications. Journal of Proteome Research, 2008, 7, 2195-2203.	3.7	37
16	Metabolomics Data Preprocessing Using ADAP and MZmine 2. Methods in Molecular Biology, 2020, 2104, 25-48.	0.9	35
17	Metabolic Reprogramming by Folate Restriction Leads to a Less Aggressive Cancer Phenotype. Molecular Cancer Research, 2017, 15, 189-200.	3.4	33
18	A Practical Guide to Metabolomics Software Development. Analytical Chemistry, 2021, 93, 1912-1923.	6.5	30

XIUXIA DU

#	Article	IF	CITATIONS
19	A Computational Strategy to Analyze Label-Free Temporal Bottom-Up Proteomics Data. Journal of Proteome Research, 2008, 7, 2595-2604.	3.7	29
20	Protein Structural Analysis via Mass Spectrometry-Based Proteomics. Advances in Experimental Medicine and Biology, 2016, 919, 397-431.	1.6	27
21	ADAP-GC 3.2: Graphical Software Tool for Efficient Spectral Deconvolution of Gas Chromatography–High-Resolution Mass Spectrometry Metabolomics Data. Journal of Proteome Research, 2018, 17, 470-478.	3.7	23
22	Applying a Targeted Label-Free Approach Using LCâ^'MS AMT Tags to Evaluate Changes in Protein Phosphorylation Following Phosphatase Inhibition. Journal of Proteome Research, 2007, 6, 4489-4497.	3.7	22
23	Phosphoproteomics Profiling of Human Skin Fibroblast Cells Reveals Pathways and Proteins Affected by Low Doses of Ionizing Radiation. PLoS ONE, 2010, 5, e14152.	2.5	21
24	Encoding and Decoding Target Locations With Waves in the Turtle Visual Cortex. IEEE Transactions on Biomedical Engineering, 2005, 52, 566-577.	4.2	20
25	Quantitative Phosphoproteome Analysis of Lysophosphatidic Acid Induced Chemotaxis Applying Dual-Step ¹⁸ 0 Labeling Coupled with Immobilized Metal-Ion Affinity Chromatography. Journal of Proteome Research, 2008, 7, 4215-4224.	3.7	16
26	Aggregate Interactome Based on Protein Cross-linking Interfaces Predicts Drug Targets to Limit Aggregation in Neurodegenerative Diseases. IScience, 2019, 20, 248-264.	4.1	12
27	Encoding of Motion Targets by Waves in Turtle Visual Cortex. IEEE Transactions on Biomedical Engineering, 2006, 53, 1688-1695.	4.2	8
28	An integrated cross-linking-MS approach to investigate cell penetrating peptides interacting partners. EuPA Open Proteomics, 2014, 3, 229-238.	2.5	7
29	ADAP-KDB: A Spectral Knowledgebase for Tracking and Prioritizing Unknown GC–MS Spectra in the NIH's Metabolomics Data Repository. Analytical Chemistry, 2021, 93, 12213-12220.	6.5	6
30	A preparatory study of how to construct consensus mass spectra of recurrent unknown metabolites from untargeted GC–MS metabolomics data. International Journal of Mass Spectrometry, 2018, 427, 73-78.	1.5	3
31	Memory-Efficient Searching of Gas-Chromatography Mass Spectra Accelerated by Prescreening. Metabolites, 2022, 12, 491.	2.9	2
32	Aggregate Interactome Based on Protein-Crosslinking Interfaces Predicts Drug Targets to Limit Aggregation in Neurodegenerative Diseases. SSRN Electronic Journal, 0, , .	0.4	0