Susheel Kalia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4056489/publications.pdf

Version: 2024-02-01

92 7,602 35
papers citations h-index

126 126 126 9121 all docs docs citations times ranked citing authors

84

g-index

#	Article	IF	CITATIONS
1	Improving photocatalytic efficiency of MnFe2O4 ferrites via doping with Zn2+/La3+ ions: photocatalytic dye degradation for water remediation. Environmental Science and Pollution Research, 2023, 30, 71527-71542.	5.3	21
2	Sustainable kenaf/bamboo fibers/clay hybrid nanocomposites: properties, environmental aspects and applications. Journal of Cleaner Production, 2022, 330, 129938.	9.3	40
3	Robust and sustainable Mg1-xCexNiyFe2-yO4 magnetic nanophotocatalysts with improved photocatalytic performance towards photodegradation of crystal violet and rhodamine B pollutants. Chemosphere, 2022, 294, 133706.	8.2	43
4	Nickel ions modified Co Mg nanophotocatalysts for solar light-driven degradation of antimicrobial pharmaceutical effluents. Journal of Water Process Engineering, 2022, 47, 102785.	5 . 6	27
5	Photocatalytic degradation of malachite green pollutant using novel dysprosium modified Zn–Mg photocatalysts for wastewater remediation. Ceramics International, 2022, 48, 29111-29120.	4.8	38
6	Photocatalytic dye degradation efficiency and reusability of Cu-substituted Zn-Mg spinel nanoferrites for wastewater remediation. Journal of Water Process Engineering, 2022, 48, 102865.	5 . 6	44
7	Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks. ACS Omega, 2022, 7, 22073-22088.	3.5	12
8	A study of magnetic properties of Y–Ni–Mn substituted Co2Z-type nanohexaferrites via vibrating sample magnetometry. Journal of Sol-Gel Science and Technology, 2021, 97, 373-381.	2.4	28
9	Recent advances in silver bromide-based Z-scheme photocatalytic systems for environmental and energy applications: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105157.	6.7	31
10	Structural, magnetic and Mössbauer analysis of lanthanum and nickel doped Co2Y-type hexaferrite nanomaterial matrix synthesized by sol-gel auto-combustion technique. Journal of Molecular Structure, 2020, 1205, 127623.	3.6	10
11	Fabrication of Ni2+ and Dy3+ substituted Y-Type nanohexaferrites: A study of structural and magnetic properties. Physica B: Condensed Matter, 2020, 595, 412378.	2.7	24
12	Preparation of gum acacia-poly(acrylamide-IPN-acrylic acid) based nanocomposite hydrogels via polymerization methods for antimicrobial applications. Journal of Molecular Structure, 2020, 1215, 128298.	3.6	27
13	Influence of Ho–Ni–Mn substitution on the structural and magnetic behavior of Ba–Sr Co2Z-type nanohexaferrites extension up to Mossbauer investigations. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	4
14	A new route of valorization of rice endosperm by-product: Production of polymeric biocomposites. Composites Part B: Engineering, 2018, 139, 195-202.	12.0	29
15	Enzymatically treated curaua fibers in poly(butylene succinate)-based biocomposites. Journal of Environmental Chemical Engineering, 2018, 6, 4452-4458.	6.7	20
16	Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 337, 118-131.	3.9	158
17	Enzymatic modification of ramie fibers and its influence on the performance of ramie-poly(butylene) Tj ETQq $1\ 1$	0.784314 3.1 	rgBT /Overloc
18	Pectin-c rosslinked -guar gum/SPION nanocomposite hydrogel for adsorption of m-cresol and o-chlorophenol. Sustainable Chemistry and Pharmacy, 2017, 6, 96-106.	3.3	78

#	Article	IF	CITATIONS
19	Conducting Polymer Hydrogels and Their Applications. Springer Series on Polymer and Composite Materials, 2017, , 193-221.	0.7	5
20	Ggum-poly(Itaconic Acid) Based Superabsorbents Via Two-Step Free-Radical Aqueous Polymerization for Environmental and Antibacterial Applications. Journal of Polymers and the Environment, 2017, 25, 176-191.	5.0	12
21	Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium. International Journal of Biological Macromolecules, 2017, 95, 484-493.	7.5	217
22	Well-defined quantum dots and broadening of optical phonon line from hydrothermal method. RSC Advances, 2016, 6, 102010-102014.	3.6	8
23	Synthesis of guar gum-acrylic acid graft copolymers based biodegradable adsorbents for cationic dye removal. International Journal of Plastics Technology, 2016, 20, 294-314.	3.1	20
24	Magnetically recoverable ZrO ₂ /Fe ₃ O ₄ /chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(<scp>vi</scp>) and dechlorination & amp; mineralization of 4-chlorophenol from simulated waste water. RSC Advances, 2016, 6, 13251-13263.	3.6	115
25	Evaluation of the retting process as a pre-treatment of vegetable fibers for the preparation of high-performance polymer biocomposites. Industrial Crops and Products, 2016, 81, 56-65.	5.2	55
26	Chitosan and Starch-Based Hydrogels Via Graft Copolymerization. Springer Series on Polymer and Composite Materials, 2016, , 189-234.	0.7	4
27	Eicosyl ammoniums elicited thermal reduction alleyway towards gold nanoparticles and their chemo-sensor aptitude. Analyst, The, 2016, 141, 2208-2217.	3.5	5
28	The development of antibacterial and hydrophobic functionalities in natural fibers for fiber-reinforced composite materials. Journal of Environmental Chemical Engineering, 2016, 4, 1743-1752.	6.7	25
29	Application of biodegradable superabsorbent hydrogel composite based on Gum ghatti-co-poly(acrylic) Tj ETQq1 1	0.78431 5.8	4 rgBT /Ove
30	Surface functionalization of lignin constituent of coconut fibers via laccase-catalyzed biografting for development of antibacterial and hydrophobic properties. Journal of Cleaner Production, 2016, 113, 176-182.	9.3	25
31	Surface functionalization of coconut fibers by enzymatic biografting of syringaldehyde for the development of biocomposites. RSC Advances, 2015, 5, 76844-76851.	3.6	35
32	Evaluation of a conducting interpenetrating network based on gum ghatti-g-poly(acrylic acid-aniline) as a colon-specific delivery system for amoxicillin trihydrate and paracetamol. New Journal of Chemistry, 2015, 39, 3021-3034.	2.8	35
33	Gum ghatti-based biodegradable and conductive carriers for colon-specific drug delivery. Colloid and Polymer Science, 2015, 293, 1181-1190.	2.1	17
34	Guar gum based biodegradable, antibacterial and electrically conductive hydrogels. International Journal of Biological Macromolecules, 2015, 75, 266-275.	7.5	70
35	Synthesis of Biodegradable <i>Gum ghatti</i> Based Poly(methacrylic acid-aniline) Conducting IPN Hydrogel for Controlled Release of Amoxicillin Trihydrate. Industrial & Engineering Chemistry Research, 2015, 54, 1982-1991.	3.7	64
36	Biodegradable and conducting hydrogels based on Guar gum polysaccharide for antibacterial and dye removal applications. Journal of Environmental Management, 2015, 162, 37-45.	7.8	117

#	Article	IF	CITATIONS
37	Combined sorptional–photocatalytic remediation of dyes by polyaniline Zr(IV) selenotungstophosphate nanocomposite. Toxicological and Environmental Chemistry, 2015, 97, 526-537.	1.2	62
38	Guaran-based biodegradable and conducting interpenetrating polymer network composite hydrogels for adsorptive removal of methylene blue dye. Polymer Degradation and Stability, 2015, 122, 52-65.	5.8	34
39	Laccase-mediated biografting of p -coumaric acid for development of antibacterial and hydrophobic properties in coconut fibers. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 289-295.	1.8	16
40	Organic-Inorganic Hybrid Nanomaterials. Advances in Polymer Science, 2015, , .	0.8	17
41	Synthesis, characterization and water retention study of biodegradable Gum ghatti-poly(acrylic) Tj ETQq $1\ 1\ 0.784$	3 <u>1</u> 4 rgBT /	/Qyerlock 1
42	Gum ghatti based novel electrically conductive biomaterials: A study of conductivity and surface morphology. EXPRESS Polymer Letters, 2014, 8, 267-281.	2.1	35
43	Fabrication and characterization of gum ghatti-polymethacrylic acid based electrically conductive hydrogels. Synthetic Metals, 2014, 187, 61-67.	3.9	48
44	A comparative study of the effect of Ni9+ and Au8+ ion beams on the properties of poly(methacrylic) Tj ETQq0 0 () rgBT /Ov	erlock 10 T
45	Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science, 2014, 292, 5-31.	2.1	363
46	Semiconductor–Polymer Hybrid Materials. Advances in Polymer Science, 2014, , 283-311.	0.8	11
47	Polyacrylamide/Ni _{0.02} Zn _{0.98} O Nanocomposite with High Solar Light Photocatalytic Activity and Efficient Adsorption Capacity for Toxic Dye Removal. Industrial & Engineering Chemistry Research, 2014, 53, 15549-15560.	3.7	113
48	Response surface methodology and optimized synthesis of guar gum-based hydrogels with enhanced swelling capacity. RSC Advances, 2014, 4, 40339-40344.	3.6	70
49	Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid and Polymer Science, 2014, 292, 2025-2052.	2.1	228
50	Effects of swift heavy ion beam irradiation on the structural and morphological properties of poly(methacrylic acid) cross-linked gum ghatti films. Vacuum, 2014, 101, 166-170.	3.5	24
51	Laccase-assisted surface functionalization of lignocellulosics. Journal of Molecular Catalysis B: Enzymatic, 2014, 102, 48-58.	1.8	43
52	A study of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted gum ghatti by a soil burial method. RSC Advances, 2014, 4, 25637.	3.6	46
53	Water retention and dye adsorption behavior of Gg-cl-poly(acrylic acid-aniline) based conductive hydrogels. Geoderma, 2014, 232-234, 45-55.	5.1	100
54	Synthesis and biodegradation studies of gamma irradiated electrically conductive hydrogels. Polymer Degradation and Stability, 2014, 107, 166-177.	5.8	67

#	Article	IF	Citations
55	Polysaccharide Based Graft Copolymers. , 2013, , .		37
56	A novel nanocomposite of polyaniline and Fe0.01Ni0.01Zn0.980: Photocatalytic, electrical and antibacterial properties. Journal of Alloys and Compounds, 2013, 578, 249-256.	5.5	56
57	Surface Modification of Sunn Hemp Fibers Using Acrylation, Peroxide and Permanganate Treatments: A Study of Morphology, Thermal Stability and Crystallinity. Polymer-Plastics Technology and Engineering, 2013, 52, 24-29.	1.9	11
58	Polymers at Cryogenic Temperatures. , 2013, , .		24
59	Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science, 2013, 38, 1232-1261.	24.7	1,760
60	Cryogenic Processing: State of the Art, Advantages and Applications. , 2013, , 1-7.		3
61	Polymer Grafting: A Versatile Means to Modify the Polysaccharides. , 2013, , 1-14.		9
62	Polysaccharide Hydrogels: Synthesis, Characterization, and Applications., 2013,, 271-290.		9
63	Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review. Journal of Environmental Chemical Engineering, 2013, 1, 97-112.	6.7	225
64	Preparation of poly(acrylamide-co-acrylic acid)-grafted gum and its flocculation and biodegradation studies. Carbohydrate Polymers, 2013, 98, 397-404.	10.2	59
65	Synthesis and properties of poly(acrylamide-aniline)-grafted gum ghatti based nanospikes. RSC Advances, 2013, 3, 25830.	3.6	80
66	Surface Functionalization of Sisal Fibers Using Peroxide Treatment Followed by Grafting of Poly(ethyl acrylate) and Copolymers. International Journal of Polymer Analysis and Characterization, 2013, 18, 596-607.	1.9	9
67	Peroxide Treatment of Soy Protein Fibers Followed by Grafting of Poly(methyl acrylate) and Copolymers. Journal of Renewable Materials, 2013, 1, 302-310.	2.2	1
68	Surface Modification Of Ramie Fibers Using Microwave Assisted Graft Copolymerization Followed By Brevibacillus Parabrevis Pretreatment. Advanced Materials Letters, 2013, 4, 742-748.	0.6	10
69	Surface Modification of Sisal Fibers Using Cellulase and Microwave-Assisted Grafting: A Study of Morphology, Crystallinity, and Thermal Stability. International Journal of Polymeric Materials and Polymeric Biomaterials, 2012, 61, 1130-1141.	3.4	4
70	Surface Modification of Sisal Fibers (Agave sisalana) Using Bacterial Cellulase and Methyl Methacrylate. Journal of Polymers and the Environment, 2012, 20, 142-151.	5.0	34
71	Graft Copolymerization Of Acrylic Acid Onto Gelatinized Patato Starch For Removal Of Metal Ions And Organic Dyes From Aqueous System. Advanced Materials Letters, 2012, 3, 259-264.	0.6	25
72	MORPHOLOGICAL AND MECHANICAL STUDIES OF POLYHYDROXYBUTYRATE COMPOSITES REINFORCED WITH FLAX-g-POLY(MA), FLAX-g-POLY(MA-co-AAc), and FLAX-g-POLY(MA-co-VA). Composites: Mechanics, Computations, Applications, 2012, 3, 263-274.	0.3	O

#	Article	IF	Citations
73	Sunn Hemp Cellulose Graft Copolymers Polyhydroxybutyrate Composites: Morphological And Mechanical Studies. Advanced Materials Letters, 2011, 2, 17-25.	0.6	31
74	Environment Benevolent Biodegradable Polymers: Synthesis, Biodegradability, and Applications. , 2011 , , $425-451$.		7
75	Natural Fibers, Bio- and Nanocomposites. International Journal of Polymer Science, 2011, 2011, 1-2.	2.7	29
76	Cellulose-Based Bio- and Nanocomposites: A Review. International Journal of Polymer Science, 2011, 2011, 1-35.	2.7	499
77	Effect of Benzoylation and Graft Copolymerization on Morphology, Thermal Stability, and Crystallinity of Sisal Fibers. Journal of Natural Fibers, 2011, 8, 27-38.	3.1	49
78	Modification of Ramie Fibers Using Microwave-Assisted Grafting and Cellulase Enzyme–Assisted Biopolishing: A Comparative Study of Morphology, Thermal Stability, and Crystallinity. International Journal of Polymer Analysis and Characterization, 2011, 16, 307-318.	1.9	26
79	Cryogenic Processing: A Study of Materials at Low Temperatures. Journal of Low Temperature Physics, 2010, 158, 934-945.	1.4	101
80	SYNTHESIS OF FLAX-G-COPOLYMERS UNDER PRESSURE FOR USE IN PHENOLIC COMPOSITES AS REINFORCEMENT. Journal of the Chilean Chemical Society, 2009, 54, .	1.2	7
81	Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polymer Engineering and Science, 2009, 49, 1253-1272.	3.1	1,097
82	Mechanical properties of flax-g-poly(methyl acrylate) reinforced phenolic composites. Fibers and Polymers, 2008, 9, 416-422.	2.1	32
83	Preparation of microwave radiation induced graft copolymers and their applications as reinforcing material in phenolic composites. Polymer Composites, 2008, 29, 791-797.	4.6	31
84	Mercerization of Flax Fiber Improves the Mechanical Properties of Fiber-Reinforced Composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2008, 57, 54-72.	3.4	65
85	Use of Flax-g-poly(MMA) as Reinforcing Material for Enhancement of Properties of Phenol Formaldehyde Composites. International Journal of Polymer Analysis and Characterization, 2008, 13, 341-352.	1.9	18
86	A Study of Crystallinity of Graft Copolymers of Flax Fiber with Binary Vinyl Monomers. E-Polymers, 2008, 8, .	3.0	2
87	Mechanical Properties of Phenolic Composites Reinforced with Flax-g-copolymers Prepared under Different Reaction Conditions - A Comparative Study. E-Journal of Chemistry, 2008, 5, 177-184.	0.5	9
88	Microwave Enhanced Synthesis of Flax-g-poly(MMA) for Use in Phenolic Composites as Reinforcement. E-Journal of Chemistry, 2008, 5, 163-168.	0.5	12
89	Graft copolymerization of MMA onto flax under different reaction conditions: a comparative study. EXPRESS Polymer Letters, 2008, 2, 93-100.	2.1	52
90	Synthesis and Characterization of Graft Co-Polymers of Flax Fiber with Binary Vinyl Monomers. International Journal of Polymer Analysis and Characterization, 2007, 12, 401-412.	1.9	60

SUSHEEL KALIA

#	Article	IF	CITATIONS
91	Grafting of Flax Fiber (Linum usitatissimum) with Vinyl Monomers for Enhancement of Properties of Flax-Phenolic Composites. Polymer Journal, 2007, 39, 1319-1327.	2.7	42
92	Ab initio study of gas phase and water-assisted tautomerization of maleimide and formamide. Journal of Chemical Sciences, 2007, 119, 617-624.	1.5	14