Catherine chaussain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4053893/publications.pdf

Version: 2024-02-01

99 papers 5,872 citations

33 h-index 79698 73 g-index

104 all docs

 $\begin{array}{c} 104 \\ \\ \text{docs citations} \end{array}$

104 times ranked 7596 citing authors

#	Article	IF	CITATIONS
1	Matrix Metalloproteinases and Other Matrix Proteinases in Relation to Cariology: The Era of †Dentin Degradomics'. Caries Research, 2015, 49, 193-208.	2.0	1,548
2	Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature, 2018, 558, 540-546.	27.8	374
3	The Role of Matrix Metalloproteinases (MMPs) in Human Caries. Journal of Dental Research, 2006, 85, 22-32.	5.2	353
4	Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nature Reviews Nephrology, 2019, 15, 435-455.	9.6	318
5	Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocrine Connections, 2014, 3, R13-R30.	1.9	238
6	Inflammatory and immunological aspects of dental pulp repair. Pharmacological Research, 2008, 58, 137-147.	7.1	195
7	Effect of a Calcium-silicate-based Restorative Cement on Pulp Repair. Journal of Dental Research, 2012, 91, 1166-1171.	5.2	194
8	Tooth dentin defects reflect genetic disorders affecting bone mineralization. Bone, 2012, 50, 989-997.	2.9	123
9	Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Scientific Reports, 2016, 6, 38814.	3.3	123
10	Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: Prevention by early treatment with 1-hydroxyvitamin D. Journal of Pediatrics, 2003, 142, 324-331.	1.8	111
11	Dentin structure in familial hypophosphatemic rickets: benefits of vitamin D and phosphate treatment. Oral Diseases, 2007, 13, 482-489.	3.0	93
12	Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion. Stem Cells Translational Medicine, 2016, 5, 392-404.	3.3	88
13	Phosphate and Vitamin D Prevent Periodontitis in X-Linked Hypophosphatemia. Journal of Dental Research, 2017, 96, 388-395.	5.2	84
14	The effect of stromelysin-1 (MMP-3) on non-collagenous extracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins. Biomaterials, 2008, 29, 4367-4373.	11.4	77
15	Wnt Acts as a Prosurvival Signal to Enhance Dentin Regeneration. Journal of Bone and Mineral Research, 2015, 30, 1150-1159.	2.8	75
16	Multiplex epithelium dysfunction due to CLDN10 mutation: the HELIX syndrome. Genetics in Medicine, 2018, 20, 190-201.	2.4	75
17	Dentin Alteration of Deciduous Teeth in Human Hypophosphatemic Rickets. Calcified Tissue International, 2006, 79, 294-300.	3.1	70
18	MMP2-cleavage of DMP1 generates a bioactive peptide promoting differentiation of dental pulp stem/progenitor cell., 2009, 18, 84-95.		67

#	Article	IF	CITATIONS
19	Osteopontin and the dento-osseous pathobiology of X-linked hypophosphatemia. Bone, 2017, 95, 151-161.	2.9	66
20	MEPE-Derived ASARM Peptide Inhibits Odontogenic Differentiation of Dental Pulp Stem Cells and Impairs Mineralization in Tooth Models of X-Linked Hypophosphatemia. PLoS ONE, 2013, 8, e56749.	2.5	61
21	Mineralization of Dense Collagen Hydrogel Scaffolds by Human Pulp Cells. Journal of Dental Research, 2013, 92, 648-654.	5.2	57
22	Priming Dental Pulp Stem Cells from Human Exfoliated Deciduous Teeth with Fibroblast Growth Factor-2 Enhances Mineralization Within Tissue-Engineered Constructs Implanted in Craniofacial Bone Defects. Stem Cells Translational Medicine, 2019, 8, 844-857.	3.3	56
23	Extracellular matrix mineralization in periodontal tissues: Noncollagenous matrix proteins, enzymes, and relationship to hypophosphatasia and Xâ€linked hypophosphatemia. Periodontology 2000, 2013, 63, 102-122.	13.4	54
24	Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation. Journal of Bone and Mineral Research, 2016, 31, 498-513.	2.8	50
25	Halve the dose while maintaining image quality in paediatric Cone Beam CT. Scientific Reports, 2019, 9, 5521.	3.3	48
26	The role of biomineralization in disorders of skeletal development and tooth formation. Nature Reviews Endocrinology, 2021, 17, 336-349.	9.6	46
27	Salivary proteome modifications associated with periodontitis in obese patients. Journal of Clinical Periodontology, 2012, 39, 799-806.	4.9	45
28	Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephrocalcinosis caused by <i>CLDN19 </i> gene mutations. Journal of Medical Genetics, 2017, 54, 26-37.	3.2	45
29	Dentin matrix degradation by host matrix metalloproteinases: inhibition and clinical perspectives toward regeneration. Frontiers in Physiology, 2013, 4, 308.	2.8	44
30	Interdisciplinary management of FGF23-related phosphate wasting syndromes: a Consensus Statement on the evaluation, diagnosis and care of patients with X-linked hypophosphataemia. Nature Reviews Endocrinology, 2022, 18, 366-384.	9.6	42
31	Free DNA precipitates calcium phosphate apatite crystals in the arterial wall inÂvivo. Atherosclerosis, 2017, 259, 60-67.	0.8	40
32	Different sympathetic pathways control the metabolism of distinct bone envelopes. Bone, 2012, 50, 1162-1172.	2.9	39
33	Abnormal osteopontin and matrix extracellular phosphoglycoprotein localization, and odontoblast differentiation, in X-linked hypophosphatemic teeth. Connective Tissue Research, 2014, 55, 79-82.	2.3	38
34	Tissue-specific mineralization defects in the periodontium of the Hyp mouse model of X-linked hypophosphatemia. Bone, 2017, 103, 334-346.	2.9	38
35	Abnormal Presence of the Matrix Extracellular Phosphoglycoprotein-Derived Acidic Serine- and Aspartate-Rich Motif Peptide in Human Hypophosphatemic Dentin. American Journal of Pathology, 2010, 177, 803-812.	3.8	36
36	Comparison of the ablation rates, fissures and fragments produced with 150µm and 272µm laser fibers with superpulsed thulium fiber laser: an in vitro study. World Journal of Urology, 2020, 39, 1683-1691.	2.2	36

#	Article	IF	CITATIONS
37	Common SNPs of <i>AmelogeninX (AMELX)</i> and Dental Caries Susceptibility. Journal of Dental Research, 2013, 92, 418-424.	5.2	35
38	Dental Caries and Enamelin Haplotype. Journal of Dental Research, 2014, 93, 360-365.	5 . 2	32
39	Impaired mineral quality in dentin in X-linked hypophosphatemia. Connective Tissue Research, 2018, 59, 91-96.	2.3	32
40	Familial hypophosphatemic vitamin D–resistant rickets—prevention of spontaneous dental abscesses on primary teeth: A case report. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2009, 107, 525-530.	1.4	31
41	Implanted Dental Pulp Cells Fail to Induce Regeneration in Partial Pulpotomies. Journal of Dental Research, 2017, 96, 1406-1413.	5.2	30
42	Grape seed extracts inhibit dentin matrix degradation by MMP-3. Frontiers in Physiology, 2014, 5, 425.	2.8	26
43	Pulp Cell Tracking by Radionuclide Imaging for Dental Tissue Engineering. Tissue Engineering - Part C: Methods, 2014, 20, 188-197.	2.1	25
44	Reparative Mineralized Tissue Characterization after Direct Pulp Capping with Calcium-Silicate-Based Cements. Materials, 2019, 12, 2102.	2.9	24
45	The Potential of FGF-2 in Craniofacial Bone Tissue Engineering: A Review. Cells, 2021, 10, 932.	4.1	24
46	Caries risk and orthodontic treatment. International Orthodontics, 2010, 8, 28-45.	1.9	23
47	Differences between inflammatory and catabolic mediators of periâ€implantitis and periodontitis lesions following initial mechanical therapy: An exploratory study. Journal of Periodontal Research, 2018, 53, 29-39.	2.7	23
48	Genetic Ablation of Osteopontin in Osteomalacic <scp><i>Hyp</i></scp> Mice Partially Rescues the Deficient Mineralization Without Correcting Hypophosphatemia. Journal of Bone and Mineral Research, 2020, 35, 2032-2048.	2.8	23
49	How much energy do we need to ablate 1 mm3 of stone during Ho:YAG laser lithotripsy? An in vitro study. World Journal of Urology, 2020, 38, 2945-2953.	2.2	23
50	Magnetic Resonance Imaging Features as Surrogate Markers of X-Linked Hypophosphatemic Rickets Activity. Hormone Research in Paediatrics, 2017, 87, 244-253.	1.8	22
51	Strategies Developed to Induce, Direct, and Potentiate Bone Healing. Frontiers in Physiology, 2017, 8, 927.	2.8	22
52	Defective Mineralization in X-Linked Hypophosphatemia Dental Pulp Cell Cultures. Journal of Dental Research, 2018, 97, 184-191.	5 . 2	22
53	Early angiogenesis detected by PET imaging with 64Cu-NODAGA-RGD is predictive of bone critical defect repair. Acta Biomaterialia, 2018, 82, 111-121.	8.3	22
54	Mouse <i>Wnt1-CRE</i> -Rosa <i>Tomato</i> Dental Pulp Stem Cells Directly Contribute to the Calvarial Bone Regeneration Process. Stem Cells, 2019, 37, 701-711.	3.2	22

#	Article	IF	Citations
55	Microvascular maturation by mesenchymal stem cells in vitro improves blood perfusion in implanted tissue constructs. Biomaterials, 2021, 268, 120594.	11.4	22
56	Sclerostin Deficiency Promotes Reparative Dentinogenesis. Journal of Dental Research, 2017, 96, 815-821.	5.2	21
57	Targeting endothelial thioredoxin-interacting protein (TXNIP) protects from metabolic disorder-related impairment of vascular function and post-ischemic revascularisation. Angiogenesis, 2020, 23, 249-264.	7.2	21
58	Claudin Loss-of-Function Disrupts Tight Junctions and Impairs Amelogenesis. Frontiers in Physiology, 2017, 8, 326.	2.8	20
59	Orosomucoid, a New Biomarker in the Association between Obesity and Periodontitis. PLoS ONE, 2013, 8, e57645.	2.5	20
60	Improving oral implant osseointegration in a murine model via <scp>W</scp> nt signal amplification. Journal of Clinical Periodontology, 2014, 41, 172-180.	4.9	18
61	Phosphorylated and Non-phosphorylated Leucine Rich Amelogenin Peptide Differentially Affect Ameloblast Mineralization. Frontiers in Physiology, 2018, 9, 55.	2.8	16
62	Characteristics of Large Animal Models for Current Cell-Based Oral Tissue Regeneration. Tissue Engineering - Part B: Reviews, 2022, 28, 489-505.	4.8	16
63	From Vascular Smooth Muscle Cells to Folliculogenesis: What About Vasorin?. Frontiers in Medicine, 2018, 5, 335.	2.6	16
64	Development of Enthesopathies and Joint Structural Damage in a Murine Model of X-Linked Hypophosphatemia. Frontiers in Cell and Developmental Biology, 2020, 8, 854.	3.7	14
65	Prevalence of Enthesopathies in Adults With X-linked Hypophosphatemia: Analysis of Risk Factors. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e224-e235.	3.6	14
66	Pre-Clinical Models in Implant Dentistry: Past, Present, Future. Biomedicines, 2021, 9, 1538.	3.2	13
67	EMMPRIN/CD147 deficiency disturbs ameloblast–odontoblast cross-talk and delays enamel mineralization. Bone, 2014, 66, 256-266.	2.9	12
68	The potential for vertical bone regeneration via maxillary periosteal elevation. Journal of Clinical Periodontology, 2014, 41, 1170-1177.	4.9	12
69	NAMPT expression in osteoblasts controls osteoclast recruitment in alveolar bone remodeling. Journal of Cellular Physiology, 2018, 233, 7402-7414.	4.1	12
70	Endothelial Colony-Forming Cells Do Not Participate to Fibrogenesis in a Bleomycin-Induced Pulmonary Fibrosis Model in Nude Mice. Stem Cell Reviews and Reports, 2018, 14, 812-822.	5.6	12
71	Impact of Early Conventional Treatment on Adult Bone and Joints in a Murine Model of X-Linked Hypophosphatemia. Frontiers in Cell and Developmental Biology, 2020, 8, 591417.	3.7	12
72	Knock-In of the Recurrent R368X Mutation of PRKAR1A that Represses cAMP-Dependent Protein Kinase A Activation: A Model of Type 1 Acrodysostosis. Journal of Bone and Mineral Research, 2017, 32, 333-346.	2.8	11

#	Article	IF	CITATIONS
73	Interest in a new test for caries risk in adolescents undergoing orthodontic treatment. Clinical Oral Investigations, 2010, 14, 177-185.	3.0	10
74	Dental and periodontal manifestations of glycogen storage diseases: a case series of 60 patients. Journal of Inherited Metabolic Disease, 2018, 41, 947-953.	3.6	8
75	Insights into the palaeobiology of an early Homo infant: multidisciplinary investigation of the GAR IVE hemi-mandible, Melka Kunture, Ethiopia. Scientific Reports, 2021, 11, 23087.	3.3	8
76	Dental and craniofacial features associated with GNAS loss of function mutations. European Journal of Orthodontics, 2020, 42, 525-533.	2.4	7
77	Acellular dense collagen-S53P4 bioactive glass hybrid gel scaffolds form more bone than stem cell delivered constructs. Materials Science and Engineering C, 2021, 120, 111743.	7.3	7
78	Oral health-related quality of life in patients with X-linked hypophosphatemia: a qualitative exploration. Endocrine Connections, 2022, 11 , .	1.9	7
79	Combining sclerostin neutralization with tissue engineering: An improved strategy for craniofacial bone repair. Acta Biomaterialia, 2022, 140, 178-189.	8.3	7
80	Evaluation of Pulp Repair after BiodentineTM Full Pulpotomy in a Rat Molar Model of Pulpitis. Biomedicines, 2021, 9, 784.	3.2	6
81	Disrupted Protein Expression and Altered Proteolytic Events in Hypophosphatemic Dentin Can Be Rescued by Dentin Matrix Protein 1. Frontiers in Physiology, 2020, 11, 82.	2.8	5
82	Dental pulp stem cells as a promising model to study imprinting diseases. International Journal of Oral Science, 2022, 14, 19.	8.6	5
83	Magnetic resonance imaging is a valuable tool to evaluate the therapeutic efficacy of burosumab in children with X-linked hypophosphatemia. European Journal of Endocrinology, 2021, 185, 475-484.	3.7	4
84	Endogenous Enzymes in Root Caries. Monographs in Oral Science, 2017, 26, 35-42.	1.8	2
85	A novel therapeutic strategy for skeletal disorders: Proof of concept of gene therapy for X-linked hypophosphatemia. Science Advances, 2021, 7, eabj5018.	10.3	2
86	A New Wnt1-CRE TomatoRosa Embryonic Stem Cell Line: A Tool for Studying Neural Crest Cell Integration Capacity. Stem Cells and Development, 2017, 26, 1682-1694.	2.1	1
87	Minimal intervention dentistry: part 8. Biotherapies for the dental pulp. British Dental Journal, 2014, 216, 619-621.	0.6	0
88	Combining Sclerostin Neutralization with Tissue Engineering: ÂAn Improved Strategy for Craniofacial Bone Repair. SSRN Electronic Journal, 0, , .	0.4	0
89	AAV liver gene therapy-mediated inhibition of FGF23 signaling as a therapeutic strategy for X-linked hypophosphatemia. Endocrine Abstracts, 0, , .	0.0	0
90	Development of mice models to study implant osseointegration and failure in alveolar bone. Bone Abstracts, 0 , , .	0.0	0

#	Article	IF	CITATIONS
91	MEPE-derived ASARM peptide impairs mineralization in tooth models of X-linked hypophosphatemia. Bone Abstracts, 0, , .	0.0	0
92	Preclinical evidence of craniofacial adverse effect of zoledronic acid in newborn mice: Potential consequences in pediatric osteosarcoma and Ewing's sarcoma patients Journal of Clinical Oncology, 2014, 32, 10047-10047.	1.6	0
93	MRI features as surrogate markers of X-linked hypophosphatemic rickets activity. Bone Abstracts, 0, , .	0.0	0
94	Endodontic Management of Patients With X Linked Hypophosphatemic Rickets: Case Series Report. Dentistry (Sunnyvale, Calif), 2017, 07, .	0.1	0
95	Micro-CT images for mechanical simulation geometrical models using advanced discretisation techniques., 2017,, 45-52.		0
96	Stress analysis of 3D trabecular patches: A computational study. , 2017, , 35-44.		0
97	Higher dose of burosumab is needed for treatment of children with sever forms of X-linked hypophosphatemia. Endocrine Abstracts, 0, , .	0.0	O
98	Higher dose of burosumab is needed for treatment of children with severe forms of X-linked hypophosphatemia. Bone Abstracts, 0, , .	0.0	0
99	Real-life clinical study: 1-year of treatment with burosumab of children and adolescents affected with X-linked hypophosphatemia. Endocrine Abstracts, 0, , .	0.0	O