Mark D'Esposito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4053212/publications.pdf

Version: 2024-02-01

267 papers

39,633 citations

100 h-index 3595 187 g-index

311 all docs

311 docs citations

times ranked

311

30123 citing authors

#	Article	IF	CITATIONS
1	The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology, 2022, 47, 90-103.	2.8	166
2	Associations among locus coeruleus catecholamines, tau pathology, and memory in aging. Neuropsychopharmacology, 2022, 47, 1106-1113.	2.8	27
3	Focal neural perturbations reshape low-dimensional trajectories of brain activity supporting cognitive performance. Nature Communications, 2022, 13, 4.	5 . 8	7
4	Consciousness is supported by near-critical slow cortical electrodynamics. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	56
5	Emotional Context Sculpts Action Goal Representations in the Lateral Frontal Pole. Journal of Neuroscience, 2022, 42, 1529-1541.	1.7	5
6	Diurnal variations of resting-state fMRI data: A graph-based analysis. NeuroImage, 2022, 256, 119246.	2.1	16
7	Long-Term Effect of Cognitive Rehabilitation Regardless of Prerehabilitation Cognitive Status for Veterans with TBI. Applied Neuropsychology Adult, 2021, 28, 436-448.	0.7	4
8	Overlooked Tertiary Sulci Serve as a Meso-Scale Link between Microstructural and Functional Properties of Human Lateral Prefrontal Cortex. Journal of Neuroscience, 2021, 41, 2229-2244.	1.7	53
9	Differential contributions of static and time-varying functional connectivity to human behavior. Network Neuroscience, 2021, 5, 145-165.	1.4	24
10	A Novel BrainHealth Index Prototype Improved by Telehealth-Delivered Training During COVID-19. Frontiers in Public Health, 2021, 9, 641754.	1.3	11
11	An MRI protocol for anatomical and functional evaluation of the California sea lion brain. Journal of Neuroscience Methods, 2021, 353, 109097.	1.3	10
12	Investigating interactive effects of worry and the catechol-o-methyltransferase gene (COMT) on working memory performance. Cognitive, Affective and Behavioral Neuroscience, 2021, 21, 1153-1163.	1.0	2
13	Working memory, cortical dopamine tone, and frontoparietal brain recruitment in post-traumatic stress disorder: a randomized controlled trial. Translational Psychiatry, 2021, 11, 389.	2.4	4
14	Improved normalization of lesioned brains via cohortâ€specific templates. Human Brain Mapping, 2021, 42, 4187-4204.	1.9	8
15	Introduction to the Special Issue. Journal of Cognitive Neuroscience, 2021, , 1-1.	1.1	0
16	Using Tertiary Sulci to Map the "Cognitive Globe―of Prefrontal Cortex. Journal of Cognitive Neuroscience, 2021, 33, 1698-1715.	1.1	19
17	Pupil-Linked Arousal Biases Evidence Accumulation Toward Desirable Percepts During Perceptual Decision-Making. Psychological Science, 2021, 32, 1494-1509.	1.8	7
18	Enhancing dopamine tone modulates global and local cortical perfusion as a function of COMT val158met genotype. NeuroImage, 2021, 242, 118472.	2.1	5

#	Article	IF	Citations
19	Impact of baseline neurocognitive functioning on outcomes following rehabilitation of executive function training for veterans with history of traumatic brain injury. Applied Neuropsychology Adult, 2020, 27, 108-120.	0.7	4
20	Goal-Oriented Attention Self-Regulation (GOALS) training in older adults. Aging and Mental Health, 2020, 24, 464-473.	1.5	6
21	The Human Intraparietal Sulcus Modulates Task-Evoked Functional Connectivity. Cerebral Cortex, 2020, 30, 875-887.	1.6	10
22	A simple method for detecting chaos in nature. Communications Biology, 2020, 3, 11.	2.0	92
23	Effects of Dopaminergic Drugs on Cognitive Control Processes Vary by Genotype. Journal of Cognitive Neuroscience, 2020, 32, 804-821.	1.1	18
24	Dissociable Neural Systems Support the Learning and Transfer of Hierarchical Control Structure. Journal of Neuroscience, 2020, 40, 6624-6637.	1.7	7
25	Dissociable neural mechanisms underlie currently-relevant, future-relevant, and discarded working memory representations. Scientific Reports, 2020, 10, 11195.	1.6	19
26	Causal Contribution of Awake Post-encoding Processes to Episodic Memory Consolidation. Current Biology, 2020, 30, 3533-3543.e7.	1.8	26
27	Distinct Oscillatory Dynamics Underlie Different Components of Hierarchical Cognitive Control. Journal of Neuroscience, 2020, 40, 4945-4953.	1.7	25
28	Brain-wide functional architecture remodeling by alcohol dependence and abstinence. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2149-2159.	3.3	66
29	The drift diffusion model as the choice rule in inter-temporal and risky choice: AÂcase study in medial orbitofrontal cortex lesion patients and controls. PLoS Computational Biology, 2020, 16, e1007615.	1.5	44
30	Causal Evidence for a Role of Theta and Alpha Oscillations in the Control of Working Memory. Current Biology, 2020, 30, 1748-1754.e4.	1.8	149
31	Title is missing!. , 2020, 16, e1007615.		0
32	Title is missing!. , 2020, 16, e1007615.		0
33	Title is missing!. , 2020, 16, e1007615.		0
34	Title is missing!. , 2020, 16, e1007615.		0
35	Title is missing!. , 2020, 16, e1007615.		0
36	Title is missing!. , 2020, 16, e1007615.		0

#	Article	IF	CITATIONS
37	Lesions to the Fronto-Parietal Network Impact Alpha-Band Phase Synchrony and Cognitive Control. Cerebral Cortex, 2019, 29, 4143-4153.	1.6	14
38	Long-term effects of executive function training among veterans with chronic TBI. Brain Injury, 2019, 33, 1513-1521.	0.6	8
39	Are individual differences in human brain organization measured with functional MRI meaningful?. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22432-22434.	3.3	19
40	Brain network modularity predicts cognitive training-related gains in young adults. Neuropsychologia, 2019, 131, 205-215.	0.7	29
41	The what, where and how of delay activity. Nature Reviews Neuroscience, 2019, 20, 466-481.	4.9	122
42	Causal Evidence for the Role of Neuronal Oscillations in Top–Down and Bottom–Up Attention. Journal of Cognitive Neuroscience, 2019, 31, 768-779.	1.1	36
43	Dopaminergic Mechanisms Underlying Normal Variation in Trait Anxiety. Journal of Neuroscience, 2019, 39, 2735-2744.	1.7	36
44	Brain Modularity: A Biomarker of Intervention-related Plasticity. Trends in Cognitive Sciences, 2019, 23, 293-304.	4.0	107
45	A sensorimotor view of verbal working memory. Cortex, 2019, 112, 134-148.	1.1	57
46	Frontoparietal Activity Interacts With Task-Evoked Changes in Functional Connectivity. Cerebral Cortex, 2019, 29, 802-813.	1.6	17
47	Reaffirming the Sensory Recruitment Account of Working Memory. Trends in Cognitive Sciences, 2018, 22, 190-192.	4.0	75
48	Effects of tolcapone and bromocriptine on cognitive stability and flexibility. Psychopharmacology, 2018, 235, 1295-1305.	1.5	23
49	White matter microstructure, white matter lesions, and hypertension: An examination of early surrogate markers of vascular-related brain change in midlife. NeuroImage: Clinical, 2018, 18, 753-761.	1.4	29
50	Quantitative Anatomical Evidence for a Dorsoventral and Rostrocaudal Segregation within the Nonhuman Primate Frontal Cortex. Journal of Cognitive Neuroscience, 2018, 30, 353-364.	1.1	3
51	Dopamine Synthesis Capacity is Associated with D2/3 Receptor Binding but Not Dopamine Release. Neuropsychopharmacology, 2018, 43, 1201-1211.	2.8	43
52	A mechanistic model of connector hubs, modularity and cognition. Nature Human Behaviour, 2018, 2, 765-777.	6.2	187
53	Is There Evidence for a Rostral-Caudal Gradient in Fronto-Striatal Loops and What Role Does Dopamine Play?. Frontiers in Neuroscience, 2018, 12, 242.	1.4	16
54	Flexible Coding of Visual Working Memory Representations during Distraction. Journal of Neuroscience, 2018, 38, 5267-5276.	1.7	95

#	Article	IF	CITATIONS
55	Hippocampal-targeted Theta-burst Stimulation Enhances Associative Memory Formation. Journal of Cognitive Neuroscience, 2018, 30, 1452-1472.	1.1	98
56	The Human Thalamus Is an Integrative Hub for Functional Brain Networks. Journal of Neuroscience, 2017, 37, 5594-5607.	1.7	458
57	Cholinergic, But Not Dopaminergic or Noradrenergic, Enhancement Sharpens Visual Spatial Perception in Humans. Journal of Neuroscience, 2017, 37, 4405-4415.	1.7	50
58	Brain Changes Following Executive Control Training in Older Adults. Neurorehabilitation and Neural Repair, 2017, 31, 910-922.	1.4	15
59	Short-Term and Working Memory â~†., 2017, , 263-274.		0
60	Serial dependence is absent at the time of perception but increases in visual working memory. Scientific Reports, 2017, 7, 14739.	1.6	152
61	Brain Network Modularity Predicts Exercise-Related Executive Function Gains in Older Adults. Frontiers in Aging Neuroscience, 2017, 9, 426.	1.7	83
62	Synaptic augmentation in a cortical circuit model reproduces serial dependence in visual working memory. PLoS ONE, 2017, 12, e0188927.	1.1	23
63	Causal evidence for lateral prefrontal cortex dynamics supporting cognitive control. ELife, 2017, 6, .	2.8	53
64	The effects of content-dependent competition on working memory capacity limits. Journal of Vision, 2017, 17, 109.	0.1	0
65	Context transitions modulate perceptual serial dependence. Journal of Vision, 2017, 17, 92.	0.1	5
66	Neural mechanisms of precision in visual working memory for faces. Journal of Vision, 2017, 17, 345.	0.1	0
67	Distinct Brain and Behavioral Benefits from Cognitive vs. Physical Training: A Randomized Trial in Aging Adults. Frontiers in Human Neuroscience, 2016, 10, 338.	1.0	69
68	The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition. Journal of Neuroscience, 2016, 36, 12083-12094.	1.7	596
69	Modulation of impulsivity and reward sensitivity in intertemporal choice by striatal and midbrain dopamine synthesis in healthy adults. Journal of Neurophysiology, 2016, 115, 1146-1156.	0.9	40
70	Reconfiguration of brain network architecture to support executive control in aging. Neurobiology of Aging, 2016, 44, 42-52.	1.5	65
71	Causal evidence for frontal cortex organization for perceptual decision making. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6059-6064.	3.3	145
72	Effects of Medial Orbitofrontal Cortex Lesions on Self-Control in Intertemporal Choice. Current Biology, 2016, 26, 2625-2628.	1.8	53

#	Article	IF	Citations
73	The Representational Basis of Working Memory. Current Topics in Behavioral Neurosciences, 2016, 37, 213-230.	0.8	42
74	Modular Brain Network Organization Predicts Response to Cognitive Training in Older Adults. PLoS ONE, 2016, 11, e0169015.	1.1	89
75	The hierarchical organization of the lateral prefrontal cortex. ELife, 2016, 5, .	2.8	155
76	Dissociable Roles of Dorsolateral Prefrontal Cortex and Frontal Eye Fields During Saccadic Eye Movements. Frontiers in Human Neuroscience, 2015, 9, 613.	1.0	26
77	The Effect of Disruption of Prefrontal Cortical Function with Transcranial Magnetic Stimulation on Visual Working Memory. Frontiers in Systems Neuroscience, 2015, 9, 169.	1.2	22
78	Influence of Motivation on Control Hierarchy in the Human Frontal Cortex. Journal of Neuroscience, 2015, 35, 3207-3217.	1.7	67
79	Genotype status of the dopamine-related catechol-O-methyltransferase (COMT) gene corresponds with desirability of "unhealthy―foods. Appetite, 2015, 92, 74-80.	1.8	14
80	Oscillatory dynamics coordinating human frontal networks in support of goal maintenance. Nature Neuroscience, 2015, 18, 1318-1324.	7.1	173
81	Ongoing dynamics in large-scale functional connectivity predict perception. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8463-8468.	3.3	229
82	Vascular risk factors, cerebrovascular reactivity, and the default-mode brain network. NeuroImage, 2015, 115, 7-16.	2.1	67
83	Dopaminergic modulation of distracter-resistance and prefrontal delay period signal. Psychopharmacology, 2015, 232, 1061-1070.	1.5	33
84	Functional brain network modularity predicts response to cognitive training after brain injury. Neurology, 2015, 84, 1568-1574.	1.5	127
85	Confidence Leak in Perceptual Decision Making. Psychological Science, 2015, 26, 1664-1680.	1.8	119
86	The modular and integrative functional architecture of the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6798-807.	3.3	474
87	Functional Characterization of the Cingulo-Opercular Network in the Maintenance of Tonic Alertness. Cerebral Cortex, 2015, 25, 2763-2773.	1.6	279
88	The effect of rehearsal rate and memory load on verbal working memory. Neurolmage, 2015, 105, 120-131.	2.1	43
89	The Rostro-Caudal Axis of Frontal Cortex Is Sensitive to the Domain of Stimulus Information. Cerebral Cortex, 2015, 25, 1815-1826.	1.6	52
90	The Cognitive Neuroscience of Working Memory. Annual Review of Psychology, 2015, 66, 115-142.	9.9	1,025

#	Article	IF	Citations
91	Levodopa administration modulates striatal processing of punishment-associated items in healthy participants. Psychopharmacology, 2015, 232, 135-144.	1.5	17
92	An Approach for Identifying Brainstem Dopaminergic Pathways Using Resting State Functional MRI. PLoS ONE, 2014, 9, e87109.	1.1	11
93	Dorsal Striatal Dopamine, Food Preference and Health Perception in Humans. PLoS ONE, 2014, 9, e96319.	1.1	19
94	Perfusion MRI Indexes Variability in the Functional Brain Effects of Theta-Burst Transcranial Magnetic Stimulation. PLoS ONE, 2014, 9, e101430.	1.1	20
95	Quantifying the Reconfiguration of Intrinsic Networks during Working Memory. PLoS ONE, 2014, 9, e106636.	1.1	55
96	Assessment of Subcomponents of Executive Functioning in Ecologically Valid Settings. Journal of Head Trauma Rehabilitation, 2014, 29, 136-146.	1.0	11
97	Correspondence Between Stimulus Encoding- and Maintenance-Related Neural Processes Underlies Successful Working Memory. Cerebral Cortex, 2014, 24, 593-599.	1.6	28
98	Evidence for working memory storage operations in perceptual cortex. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 117-128.	1.0	17
99	Distributed and Dynamic Storage of Working Memory Stimulus Information in Extrastriate Cortex. Journal of Cognitive Neuroscience, 2014, 26, 1141-1153.	1.1	113
100	Revisiting the role of persistent neural activity during working memory. Trends in Cognitive Sciences, 2014, 18, 82-89.	4.0	385
101	Dopamine and the Cognitive Downside of a Promised Bonus. Psychological Science, 2014, 25, 1003-1009.	1.8	55
102	The effects of lateral prefrontal transcranial magnetic stimulation on item memory encoding. Neuropsychologia, 2014, 53, 197-202.	0.7	43
103	Modulation of working memory function by motivation through lossâ€aversion. Human Brain Mapping, 2013, 34, 762-774.	1.9	42
104	Impaired Prefrontal-Basal Ganglia Functional Connectivity and Substantia Nigra Hyperactivity in Schizophrenia. Biological Psychiatry, 2013, 74, 122-129.	0.7	120
105	Lateral Prefrontal Cortex is Organized into Parallel Dorsal and Ventral Streams Along the Rostro-Caudal Axis. Cerebral Cortex, 2013, 23, 2457-2466.	1.6	40
106	The salience network causally influences default mode network activity during moral reasoning. Brain, 2013, 136, 1929-1941.	3.7	180
107	Dissociable fronto-striatal effects of dopamine D2 receptor stimulation on cognitive versusÂmotor flexibility. Cortex, 2013, 49, 2799-2811.	1.1	47
108	Attention Selectively Modifies the Representation of Individual Faces in the Human Brain. Journal of Neuroscience, 2013, 33, 6979-6989.	1.7	28

#	Article	IF	CITATIONS
109	Abstract Rule Learning: The Differential Effects of Lesions in Frontal Cortex. Cerebral Cortex, 2013, 23, 230-240.	1.6	20
110	Working Memory., 2013,,.		0
111	The Positional-Specificity Effect Reveals a Passive-Trace Contribution to Visual Short-Term Memory. PLoS ONE, 2013, 8, e83483.	1.1	8
112	Learning language with the wrong neural scaffolding: the cost of neural commitment to sounds. Frontiers in Systems Neuroscience, 2013, 7, 85.	1.2	18
113	The effect of theta-burst TMS on cognitive control networks measured with resting state fMRI. Frontiers in Systems Neuroscience, 2013, 7, 124.	1.2	105
114	The Dynamic Nature of Top-Down Signals Originating from Prefrontal Cortex: A Combined fMRI–TMS Study. Journal of Neuroscience, 2012, 32, 15458-15466.	1.7	148
115	Alpha-Band Phase Synchrony Is Related to Activity in the Fronto-Parietal Adaptive Control Network. Journal of Neuroscience, 2012, 32, 14305-14310.	1.7	229
116	Focal Brain Lesions to Critical Locations Cause Widespread Disruption of the Modular Organization of the Brain. Journal of Cognitive Neuroscience, 2012, 24, 1275-1285.	1.1	318
117	Modulation of Inhibition of Return by the Dopamine D2 Receptor Agonist Bromocriptine Depends on Individual DAT1 Genotype. Cerebral Cortex, 2012, 22, 1133-1138.	1.6	10
118	The continuing challenge of understanding and modeling hemodynamic variation in fMRI. NeuroImage, 2012, 62, 1017-1023.	2.1	159
119	The Impact of Social Disparity on Prefrontal Function in Childhood. PLoS ONE, 2012, 7, e35744.	1.1	168
120	Spatial and temporal dynamics of cortical networks engaged in memory encoding and retrieval. Frontiers in Human Neuroscience, 2012, 6, 109.	1.0	18
121	Goal-directed attention alters the tuning of object-based representations in extrastriate cortex. Frontiers in Human Neuroscience, 2012, 6, 187.	1.0	23
122	Inverted-U–Shaped Dopamine Actions on Human Working Memory and Cognitive Control. Biological Psychiatry, 2011, 69, e113-e125.	0.7	1,315
123	The Dopamine Agonist Bromocriptine Differentially Affects Fronto-Striatal Functional Connectivity During Working Memory. Frontiers in Human Neuroscience, 2011, 5, 32.	1.0	43
124	Recency Effects in the Inferior Parietal Lobe during Verbal Recognition Memory. Frontiers in Human Neuroscience, 2011, 5, 59.	1.0	20
125	Rehabilitation of Executive Functioning With Training in Attention Regulation Applied to Individually Defined Goals. Journal of Head Trauma Rehabilitation, 2011, 26, 325-338.	1.0	107
126	Interaction Between Family History of Alcoholism and Locus of Control in the Opioid Regulation of Impulsive Responding Under the Influence of Alcohol. Alcoholism: Clinical and Experimental Research, 2011, 35, 1905-1914.	1.4	24

#	Article	IF	CITATIONS
127	Functional connectivity during top-down modulation of visual short-term memory representations. Neuropsychologia, 2011, 49, 1589-1596.	0.7	56
128	Conduction aphasia, sensory-motor integration, and phonological short-term memory – An aggregate analysis of lesion and fMRI data. Brain and Language, 2011, 119, 119-128.	0.8	261
129	Can Age-Associated Memory Decline Be Treated?. New England Journal of Medicine, 2011, 365, 1346-1347.	13.9	5
130	Training of goal-directed attention regulation enhances control over neural processing for individuals with brain injury. Brain, 2011, 134, 1541-1554.	3.7	94
131	Estrogen Shapes Dopamine-Dependent Cognitive Processes: Implications for Women's Health. Journal of Neuroscience, 2011, 31, 5286-5293.	1.7	304
132	A Functional Role for the Motor System in Language Understanding. Psychological Science, 2011, 22, 849-854.	1.8	133
133	The Prefrontal Cortex Modulates Category Selectivity in Human Extrastriate Cortex. Journal of Cognitive Neuroscience, 2011, 23, 1-10.	1.1	101
134	Neural activity during social signal perception correlates with self-reported empathy. Brain Research, 2010, 1308, 100-113.	1.1	159
135	The Functional Anatomy of a Perceptual Decision in the Human Brain. Journal of Neurophysiology, 2010, 103, 1179-1194.	0.9	109
136	Neural Representations of Relevant and Irrelevant Features in Perceptual Decision Making. Journal of Neuroscience, 2010, 30, 15778-15789.	1.7	56
137	Longitudinal Evidence for Functional Specialization of the Neural Circuit Supporting Working Memory in the Human Brain. Journal of Neuroscience, 2010, 30, 11062-11067.	1.7	117
138	Double dissociation of two cognitive control networks in patients with focal brain lesions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12017-12022.	3.3	169
139	Stimulant Medication and Prefrontal Functional Connectivity During Working Memory in ADHD. Journal of Attention Disorders, 2010, 14, 69-78.	1.5	34
140	Frontal Cortex and the Discovery of Abstract Action Rules. Neuron, 2010, 66, 315-326.	3.8	272
141	Traumatic Brain Injury: From Bench to Bedside to Society. Neuron, 2010, 66, 11-14.	3.8	57
142	Top-down flow of visual spatial attention signals from parietal to occipital cortex. Journal of Vision, 2009, 9, 18-18.	0.1	126
143	Network changes in the transition from initial learning to well-practiced visual categorization. Frontiers in Human Neuroscience, 2009, 3, 44.	1.0	11
144	Striatal Dopamine Predicts Outcome-Specific Reversal Learning and Its Sensitivity to Dopaminergic Drug Administration. Journal of Neuroscience, 2009, 29, 1538-1543.	1.7	315

#	Article	IF	Citations
145	Repetition Suppression and Reactivation in Auditory–Verbal Short-Term Recognition Memory. Cerebral Cortex, 2009, 19, 1474-1485.	1.6	57
146	The effect of non-visual working memory load on top-down modulation of visual processing. Neuropsychologia, 2009, 47, 1637-1646.	0.7	85
147	Now or Later? An fMRI study of the effects of endogenous opioid blockade on a decision-making network. Pharmacology Biochemistry and Behavior, 2009, 93, 291-299.	1.3	70
148	A comparison of Granger causality and coherency in fMRlâ€based analysis of the motor system. Human Brain Mapping, 2009, 30, 3475-3494.	1.9	40
149	Hierarchical cognitive control deficits following damage to the human frontal lobe. Nature Neuroscience, 2009, 12, 515-522.	7.1	217
150	Is the rostro-caudal axis of the frontal lobe hierarchical?. Nature Reviews Neuroscience, 2009, 10, 659-669.	4.9	773
151	Advances in neuroimaging of traumatic brain injury and posttraumatic stress disorder. Journal of Rehabilitation Research and Development, 2009, 46, 717.	1.6	80
152	Spatio-temporal dynamics of neural mechanisms underlying component operations in working memory. Brain Research, 2008, 1206, 61-75.	1.1	18
153	Prefrontal contributions to domain-general executive control processes during temporal context retrieval. Neuropsychologia, 2008, 46, 1088-1103.	0.7	55
154	The influence of personality on neural mechanisms of observational fear and reward learning. Neuropsychologia, 2008, 46, 2709-2724.	0.7	102
155	Functional connectivity of the hippocampus in elderly with mild memory dysfunction carrying the APOE É>4 allele. Neurobiology of Aging, 2008, 29, 1644-1653.	1.5	23
156	Cholinergic Enhancement Reduces Spatial Spread of Visual Responses in Human Early Visual Cortex. Neuron, 2008, 60, 904-914.	3.8	88
157	The Search for the Phonological Store: From Loop to Convolution. Journal of Cognitive Neuroscience, 2008, 20, 762-778.	1.1	322
158	Prefrontal and parietal contributions to refreshing: An rTMS study. NeuroImage, 2008, 39, 436-440.	2.1	16
159	Functional MRI investigation of verbal selection mechanisms in lateral prefrontal cortex. Neurolmage, 2008, 43, 801-807.	2.1	78
160	Mentalizing about emotion and its relationship to empathy. Social Cognitive and Affective Neuroscience, 2008, 3, 204-217.	1.5	197
161	Group comparisons: imaging the aging brain. Social Cognitive and Affective Neuroscience, 2008, 3, 290-297.	1.5	87
162	Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13122-13126.	3.3	382

#	Article	IF	CITATIONS
163	Dynamic Adjustments in Prefrontal, Hippocampal, and Inferior Temporal Interactions with Increasing Visual Working Memory Load. Cerebral Cortex, 2008, 18, 1618-1629.	1.6	121
164	Working Memory Capacity Predicts Dopamine Synthesis Capacity in the Human Striatum. Journal of Neuroscience, 2008, 28, 1208-1212.	1.7	264
165	Chapter 11 Working memory. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 88, 237-247.	1.0	16
166	Impulsive Personality Predicts Dopamine-Dependent Changes in Frontostriatal Activity during Component Processes of Working Memory. Journal of Neuroscience, 2007, 27, 5506-5514.	1.7	239
167	Immediate Reward Bias in Humans: Fronto-Parietal Networks and a Role for the Catechol- <i>O</i> -Methyltransferase 158 ^{Val/Val} Genotype. Journal of Neuroscience, 2007, 27, 14383-14391.	1.7	276
168	Endogenous Opioid Blockade and Impulsive Responding in Alcoholics and Healthy Controls. Neuropsychopharmacology, 2007, 32, 439-449.	2.8	86
169	Functional Plasticity in Ventral Temporal Cortex following Cognitive Rehabilitation of a Congenital Prosopagnosic. Journal of Cognitive Neuroscience, 2007, 19, 1790-1802.	1.1	97
170	Functional Magnetic Resonance Imaging Evidence for a Hierarchical Organization of the Prefrontal Cortex. Journal of Cognitive Neuroscience, 2007, 19, 2082-2099.	1.1	519
171	Age-related deficits in component processes of working memory Neuropsychology, 2007, 21, 532-539.	1.0	80
172	Neural mechanisms for response selection: comparing selection of responses and items from working memory. NeuroImage, 2007, 34, 446-454.	2.1	53
173	Spatio-temporal information analysis of event-related BOLD responses. Neurolmage, 2007, 34, 1545-1561.	2.1	43
174	A brief thought can modulate activity in extrastriate visual areas: Top-down effects of refreshing just-seen visual stimuli. Neurolmage, 2007, 37, 290-299.	2.1	115
175	Functional Interactions between Prefrontal and Visual Association Cortex Contribute to Top-Down Modulation of Visual Processing. Cerebral Cortex, 2007, 17, i125-i135.	1.6	229
176	Efficiency of the Prefrontal Cortex During Working Memory in Attention-Deficit/Hyperactivity Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2007, 46, 1357-1366.	0.3	87
177	From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 761-772.	1.8	620
178	Reducing vascular variability of fMRI data across aging populations using a breathholding task. Human Brain Mapping, 2007, 28, 846-859.	1.9	129
179	Reward modulation of prefrontal and visual association cortex during an incentive working memory task. Brain Research, 2007, 1141, 168-177.	1.1	148
180	Regional specificity and practice: Dynamic changes in object and spatial working memory. Brain Research, 2007, 1180, 78-89.	1.1	29

#	Article	IF	Citations
181	Segregation of function in the lateral prefrontal cortex during visual object working memory. Brain Research, 2007, 1184, 217-225.	1.1	14
182	Distinct mechanisms in visual category learning. Cognitive, Affective and Behavioral Neuroscience, 2007, 7, 251-259.	1.0	33
183	Top-Down Modulation and Normal Aging. Annals of the New York Academy of Sciences, 2007, 1097, 67-83.	1.8	172
184	Neurocognitive Inefficacy of the Strategy Process. Annals of the New York Academy of Sciences, 2007, 1118, 163-185.	1.8	9
185	Neural mechanisms of prefrontal cortical function: implications for cognitive rehabilitation. Progress in Brain Research, 2006, 157, 123-392.	0.9	26
186	Differential effects of distraction during working memory on delay-period activity in the prefrontal cortex and the visual association cortex. NeuroImage, 2006, 29, 1117-1126.	2.1	119
187	Neural correlates of cognitive efficiency. Neurolmage, 2006, 33, 969-979.	2.1	299
188	Modulation of Inferotemporal Cortex Activation during Verbal Working Memory Maintenance. Neuron, 2006, 51, 251-261.	3.8	96
189	Neurorehabilitation of executive function. , 2006, , 475-487.		3
190	Selection and Maintenance of Saccade Goals in the Human Frontal Eye Fields. Journal of Neurophysiology, 2006, 95, 3923-3927.	0.9	79
191	Is the Prefrontal Cortex Necessary for Delay Task Performance? Evidence from Lesion and fMRI Data. Journal of the International Neuropsychological Society, 2006, 12, 248-260.	1.2	59
192	Functional Reintegration of Prefrontal Neural Networks for Enhancing Recovery After Brain Injury. Journal of Head Trauma Rehabilitation, 2006, 21, 107-118.	1.0	43
193	Sequence learning in pianists and nonpianists: An fMRI study of motor expertise. Cognitive, Affective and Behavioral Neuroscience, 2006, 6, 246-259.	1.0	52
194	The neural effect of stimulus-response modality compatibility on dual-task performance: an fMRI study. Psychological Research, 2006, 70, 514-525.	1.0	106
195	Reversal learning in Parkinson's disease depends on medication status and outcome valence. Neuropsychologia, 2006, 44, 1663-1673.	0.7	272
196	Preserved function of the fusiform face area in schizophrenia as revealed by fMRI. Psychiatry Research - Neuroimaging, 2006, 148, 205-216.	0.9	52
197	Functional Connectivity of Cortical Networks Involved in Bimanual Motor Sequence Learning. Cerebral Cortex, 2006, 17, 1227-1234.	1.6	158
198	Individual capacity differences predict working memory performance and prefrontal activity following dopamine receptor stimulation. Cognitive, Affective and Behavioral Neuroscience, 2005, 5, 212-221.	1.0	126

#	Article	IF	Citations
199	Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 2005, 8, 1298-1300.	7.1	788
200	Impulsive Responding in Alcoholics. Alcoholism: Clinical and Experimental Research, 2005, 29, 2158-2169.	1.4	286
201	Directing the mind's eye: prefrontal, inferior and medial temporal mechanisms for visual working memory. Current Opinion in Neurobiology, 2005, 15, 175-182.	2.0	208
202	Functional interactions between oculomotor regions during prosaccades and antisaccades. Human Brain Mapping, 2005, 26, 119-127.	1.9	35
203	A functional MRI study of the effects of bromocriptine, a dopamine receptor agonist, on component processes of working memory. Psychopharmacology, 2005, 180, 1-10.	1.5	80
204	Top-down Enhancement and Suppression of the Magnitude and Speed of Neural Activity. Journal of Cognitive Neuroscience, 2005, 17, 507-517.	1.1	403
205	Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain, 2005, 128, 1964-1983.	3.7	451
206	Canceling Planned Action: An fMRI Study of Countermanding Saccades. Cerebral Cortex, 2005, 15, 1281-1289.	1.6	123
207	Dissociating Age-related Changes in Cognitive Strategy and Neural Efficiency Using Event-related fMRI. Cortex, 2005, 41, 582-594.	1.1	115
208	Coherence between fMRI time-series distinguishes two spatial working memory networks. NeuroImage, 2005, 26, 177-183.	2.1	59
209	Measuring temporal dynamics of functional networks using phase spectrum of fMRI data. NeuroImage, 2005, 28, 227-237.	2.1	73
210	The neural correlates of direct and reflected self-knowledge. NeuroImage, 2005, 28, 797-814.	2.1	510
211	Searching for "the Top―in Top-Down Control. Neuron, 2005, 48, 535-538.	3.8	260
212	Frontal Networks for Learning and Executing Arbitrary Stimulus-Response Associations. Journal of Neuroscience, 2005, 25, 2723-2732.	1.7	189
213	Maintenance of Spatial and Motor Codes during Oculomotor Delayed Response Tasks. Journal of Neuroscience, 2004, 24, 3944-3952.	1.7	273
214	Rapid Prefrontal-Hippocampal Habituation to Novel Events. Journal of Neuroscience, 2004, 24, 5356-5363.	1.7	193
215	Inferior Temporal, Prefrontal, and Hippocampal Contributions to Visual Working Memory Maintenance and Associative Memory Retrieval. Journal of Neuroscience, 2004, 24, 3917-3925.	1.7	308
216	Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia, 2004, 42, 2-13.	0.7	593

#	Article	IF	Citations
217	Category-specific modulation of inferior temporal activity during working memory encoding and maintenance. Cognitive Brain Research, 2004, 20, 37-45.	3.3	188
218	The effects of prefrontal lesions on working memory performance and theory. Cognitive, Affective and Behavioral Neuroscience, 2004, 4, 528-539.	1.0	105
219	Functional connectivity during working memory maintenance. Cognitive, Affective and Behavioral Neuroscience, 2004, 4, 580-599.	1.0	295
220	Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neurolmage, 2004, 21, 647-658.	2.1	382
221	Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neurolmage, 2004, 21, 1639-1651.	2.1	852
222	A functional MRI study of the influence of practice on component processes of working memory. NeuroImage, 2004, 22, 211-221.	2.1	144
223	Measuring functional connectivity during distinct stages of a cognitive task. Neurolmage, 2004, 23, 752-763.	2.1	809
224	Spatial working memory activity of the caudate nucleus is sensitive to frame of reference. Cognitive, Affective and Behavioral Neuroscience, 2003, 3, 133-144.	1.0	71
225	A subsequent-memory effect in dorsolateral prefrontal cortex. Cognitive Brain Research, 2003, 16, 162-166.	3.3	57
226	Prefrontal activity associated with working memory and episodic long-term memory. Neuropsychologia, 2003, 41, 378-389.	0.7	391
227	Cognitive effects of the dopamine receptor agonist pergolide. Neuropsychologia, 2003, 41, 1020-1027.	0.7	116
228	Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nature Reviews Neuroscience, 2003, 4, 863-872.	4.9	734
229	Seeking the Neural Substrates of Visual Working Memory Storage. Cortex, 2003, 39, 927-946.	1.1	148
230	Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 2003, 7, 415-423.	4.0	1,639
231	Dissecting Contributions of Prefrontal Cortex and Fusiform Face Area to Face Working Memory. Journal of Cognitive Neuroscience, 2003, 15, 771-784.	1.1	187
232	Neural Evidence for Representation-Specific Response Selection. Journal of Cognitive Neuroscience, 2003, 15, 1111-1121.	1.1	117
233	Success and Failure Suppressing Reflexive Behavior. Journal of Cognitive Neuroscience, 2003, 15, 409-418.	1.1	190
234	The Contribution of Functional Brain Imaging to Our Understanding of Cognitive Aging. Science of Aging Knowledge Environment: SAGE KE, 2003, 2003, 2pe-2.	0.9	10

#	Article	IF	Citations
235	The Influence of Working-Memory Demand and Subject Performance on Prefrontal Cortical Activity. Journal of Cognitive Neuroscience, 2002, 14, 721-731.	1.1	328
236	The role of lateral prefrontal cortex in working memory: evidence from event-related fMRI studies. International Congress Series, 2002, 1232, 21-27.	0.2	4
237	Neural implementation of response selection in humans as revealed by localized effects of stimulus-response compatibility on brain activation. Human Brain Mapping, 2002, 17, 193-201.	1.9	79
238	Effects of frontal lobe damage on interference effects in working memory. Cognitive, Affective and Behavioral Neuroscience, 2002, 2, 109-120.	1.0	250
239	Medial Temporal Lobe Activity Associated with Active Maintenance of Novel Information. Neuron, 2001, 31, 865-873.	3.8	357
240	Cortical effects of bromocriptine, a D-2 dopamine receptor agonist, in human subjects, revealed by fMRI. Human Brain Mapping, 2001, 12, 246-257.	1.9	91
241	Age-related changes in brain–behaviour relationships: Evidence from event-related functional MRI studies. European Journal of Cognitive Psychology, 2001, 13, 235-256.	1.3	55
242	Aging and reflective processes of working memory: Binding and test load deficits Psychology and Aging, 2000, 15, 527-541.	1.4	246
243	Review Article: Neuroimaging of Recovery of Function after Stroke: Implications for Rehabilitation. Neurorehabilitation and Neural Repair, 2000, 14, 171-179.	1.4	7
244	Isolating the neural mechanisms of age-related changes in human working memory. Nature Neuroscience, 2000, 3, 509-515.	7.1	505
245	Activity in Human Frontal Cortex Associated with Spatial Working Memory and Saccadic Behavior. Journal of Cognitive Neuroscience, 2000, 12, 2-14.	1.1	140
246	Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Experimental Brain Research, 2000, 133, 3-11.	0.7	757
247	Left Anterior Prefrontal Activation Increases with Demands to Recall Specific Perceptual Information. Journal of Neuroscience, 2000, 20, RC108-RC108.	1.7	197
248	Functional Neuroimaging of Cognition. Seminars in Neurology, 2000, 20, 487-498.	0.5	50
249	Using event-related fMRI to assess delay-period activity during performance of spatial and nonspatial working memory tasks. Brain Research Protocols, 2000, 5, 57-66.	1.7	146
250	"Whatâ€â€"Then—"Where―in Visual Working Memory: An Event-Related fMRI Study. Journal of Cogni Neuroscience, 1999, 11, 585-597.	tive 1.1	226
251	Cognitive aging: New answers to old questions. Current Biology, 1999, 9, R939-R941.	1.8	8
252	The Effect of Normal Aging on the Coupling of Neural Activity to the Bold Hemodynamic Response. NeuroImage, 1999, 10, 6-14.	2.1	440

#	Article	IF	CITATIONS
253	Effects of Repetition and Competition on Activity in Left Prefrontal Cortex during Word Generation. Neuron, 1999, 23, 513-522.	3.8	495
254	Temporal isolation of the neural correlates of spatial mnemonic processing with fMRI. Cognitive Brain Research, 1999, 7, 255-268.	3.3	126
255	Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: an event-related fMRI study. Cognitive Brain Research, 1999, 8, 107-115.	3.3	130
256	Event-related functional MRI: Implications for cognitive psychology Psychological Bulletin, 1999, 125, 155-164.	5.5	175
257	A Trial-Based Experimental Design for fMRI. Neurolmage, 1997, 6, 122-138.	2.1	428
258	Cognitive Functions in the Prefrontal Cortexâ€"Working Memory and Executive Control. Current Directions in Psychological Science, 1997, 6, 185-192.	2.8	83
259	Working memory impairments in traumatic brain injury: evidence from a dual-task paradigm. Neuropsychologia, 1997, 35, 1341-1353.	0.7	248
260	Anomaly Judgments of Subject–Predicate Relations in Alzheimer's Disease. Brain and Language, 1996, 54, 216-232.	0.8	18
261	The Physiological Basis of Executive Function and Working Memory. Neuroscientist, 1996, 2, 345-352.	2.6	48
262	Functional Magnetic Resonance Imaging of Regional Brain Activity in Patients with Intracerebral Gliomas: Findings and Implications for Clinical Management. Neurosurgery, 1996, 38, 329-338.	0.6	237
263	Progressive Nonfluent Aphasia: Language, Cognitive, and PET Measures Contrasted with Probable Alzheimer's Disease. Journal of Cognitive Neuroscience, 1996, 8, 135-154.	1.1	204
264	Semantic Processing and Orthographic Specificity in Hemispatial Neglect. Journal of Cognitive Neuroscience, 1996, 8, 291-304.	1.1	90
265	The clinical profiles, recovery, and rehabilitation of memory disorders. NeuroRehabilitation, 1995, 5, 141-159.	0.5	2
266	The neural basis of the central executive system of working memory. Nature, 1995, 378, 279-281.	13.7	1,397
267	Neurorehabilitation of executive functions. , 0, , 489-499.		2