
Martha L Bulyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4050565/publications.pdf Version: 2024-02-01

ΜΑΦΤΗΛΙ ΒΙΙΙνκ

#	Article	IF	CITATIONS
1	Diversity and Complexity in DNA Recognition by Transcription Factors. Science, 2009, 324, 1720-1723.	12.6	874
2	Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nature Biotechnology, 2006, 24, 1429-1435.	17.5	612
3	Variation in Homeodomain DNA Binding Revealed by High-Resolution Analysis of Sequence Preferences. Cell, 2008, 133, 1266-1276.	28.9	552
4	Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO Journal, 2010, 29, 2147-2160.	7.8	497
5	High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Research, 2009, 19, 556-566.	5.5	365
6	Evaluation of methods for modeling transcription factor sequence specificity. Nature Biotechnology, 2013, 31, 126-134.	17.5	341
7	Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell, 2018, 173, 430-442.e17.	28.9	328
8	Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nature Protocols, 2009, 4, 393-411.	12.0	322
9	Additivity in protein-DNA interactions: how good an approximation is it?. Nucleic Acids Research, 2002, 30, 4442-4451.	14.5	284
10	Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors. Nucleic Acids Research, 2002, 30, 1255-1261.	14.5	282
11	Genomic Regions Flanking E-Box Binding Sites Influence DNA Binding Specificity of bHLH Transcription Factors through DNA Shape. Cell Reports, 2013, 3, 1093-1104.	6.4	280
12	UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein–DNA interactions. Nucleic Acids Research, 2015, 43, D117-D122.	14.5	252
13	Transcription factor–DNA binding: beyond binding site motifs. Current Opinion in Genetics and Development, 2017, 43, 110-119.	3.3	245
14	A Multiparameter Network Reveals Extensive Divergence between C. elegans bHLH Transcription Factors. Cell, 2009, 138, 314-327.	28.9	242
15	Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-ήB family DNA binding. Nature Immunology, 2012, 13, 95-102.	14.5	188
16	Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-directed neural patterning. Genes and Development, 2012, 26, 2802-2816.	5.9	158
17	DNA-binding specificity changes in the evolution of forkhead transcription factors. Proceedings of the United States of America, 2013, 110, 12349-12354.	7.1	150
18	The NF-κB Genomic Landscape in Lymphoblastoid B Cells. Cell Reports, 2014, 8, 1595-1606.	6.4	147

Martha L Bulyk

#	Article	IF	CITATIONS
19	Distinguishing direct versus indirect transcription factor–DNA interactions. Genome Research, 2009, 19, 2090-2100.	5.5	128
20	Survey of variation in human transcription factors reveals prevalent DNA binding changes. Science, 2016, 351, 1450-1454.	12.6	114
21	Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biology, 2011, 12, R125.	9.6	103
22	Precise temporal control of the eye regulatory gene <i>Pax6</i> via enhancer-binding site affinity. Genes and Development, 2010, 24, 980-985.	5.9	97
23	Nonâ€ÐNAâ€binding cofactors enhance DNAâ€binding specificity of a transcriptional regulatory complex. Molecular Systems Biology, 2011, 7, 555.	7.2	95
24	Systematic identification of mammalian regulatory motifs' target genes and functions. Nature Methods, 2008, 5, 347-353.	19.0	86
25	Transcriptional Silencers in Drosophila Serve a Dual Role as Transcriptional Enhancers in Alternate Cellular Contexts. Molecular Cell, 2020, 77, 324-337.e8.	9.7	85
26	Protein Binding Microarrays (PBMs) for Rapid, High-Throughput Characterization of the Sequence Specificities of DNA Binding Proteins. , 2006, 338, 245-260.		71
27	A Comprehensive Drosophila melanogaster Transcription Factor Interactome. Cell Reports, 2019, 27, 955-970.e7.	6.4	66
28	EP300 Selectively Controls the Enhancer Landscape of <i>MYCN</i> -Amplified Neuroblastoma. Cancer Discovery, 2022, 12, 730-751.	9.4	64
29	Diversification of Transcription Factor Paralogs via Noncanonical Modularity in C2H2 Zinc Finger DNA Binding. Molecular Cell, 2014, 55, 640-648.	9.7	56
30	A Motif Co-Occurrence Approach for Genome-Wide Prediction of Transcription-Factor-Binding Sites in Escherichia coli. Genome Research, 2004, 14, 201-208.	5.5	55
31	Highly parallel assays of tissue-specific enhancers in whole Drosophila embryos. Nature Methods, 2013, 10, 774-780.	19.0	55
32	Transcriptional Silencers: Driving Gene Expression with the Brakes On. Trends in Genetics, 2021, 37, 514-527.	6.7	45
33	Differential Occupancy of Two GA-Binding Proteins Promotes Targeting of the Drosophila Dosage Compensation Complex to the Male X Chromosome. Cell Reports, 2018, 22, 3227-3239.	6.4	39
34	Identification of Human Lineage-Specific Transcriptional Coregulators Enabled by a Glossary of Binding Modules and Tunable Genomic Backgrounds. Cell Systems, 2017, 5, 187-201.e7.	6.2	34
35	[13] Analysis of Sequence Specificities of DNAâ€Binding Proteins with Protein Binding Microarrays. Methods in Enzymology, 2006, 410, 279-299.	1.0	32
36	Differential regulation of mesodermal gene expression by <i>Drosophila</i> cell type-specific Forkhead transcription factors. Development (Cambridge), 2012, 139, 1457-1466.	2.5	32

MARTHA L BULYK

#	Article	IF	CITATIONS
37	Bispecific Forkhead Transcription Factor FoxN3 Recognizes Two Distinct Motifs with Different DNA Shapes. Molecular Cell, 2019, 74, 245-253.e6.	9.7	31
38	LIN28B regulates transcription and potentiates MYCN-induced neuroblastoma through binding to ZNF143 at target gene promotors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16516-16526.	7.1	31
39	Context influences on TALE–DNA binding revealed by quantitative profiling. Nature Communications, 2015, 6, 7440.	12.8	30
40	Phosphorylation of the chromatin remodeling factor DPF3a induces cardiac hypertrophy through releasing HEY repressors from DNA. Nucleic Acids Research, 2016, 44, 2538-2553.	14.5	30
41	Ancient mechanisms for the evolution of the bicoid homeodomain's function in fly development. ELife, 2018, 7, .	6.0	28
42	Jury remains out on simple models of transcription factor specificity. Nature Biotechnology, 2011, 29, 483-484.	17.5	27
43	A feed-forward relay integrates the regulatory activities of Bicoid and Orthodenticle via sequential binding to suboptimal sites. Genes and Development, 2018, 32, 723-736.	5.9	24
44	Common variants in signaling transcription-factor-binding sites drive phenotypic variability in red blood cell traits. Nature Genetics, 2020, 52, 1333-1345.	21.4	24
45	Diversification of transcription factor–DNA interactions and the evolution of gene regulatory networks. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1423.	6.6	22
46	Interspecies analysis of MYC targets identifies tRNA synthetases as mediators of growth and survival in MYC-overexpressing cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14614-14619.	7.1	14
47	Biological code breaking in the 21st century. Molecular Systems Biology, 2006, 2, 2006.0018.	7.2	10
48	A ChIP-exo screen of 887 Protein Capture Reagents Program transcription factor antibodies in human cells. Genome Research, 2021, 31, 1663-1679.	5.5	9
49	Lineage-specific control of convergent differentiation by a Forkhead repressor. Development (Cambridge), 2021, 148, .	2.5	9
50	MEDEA: analysis of transcription factor binding motifs in accessible chromatin. Genome Research, 2020, 30, 736-748.	5.5	8
51	Context and number of noncanonical repeat variable diresidues impede the design of TALE proteins with improved DNA targeting. Protein Science, 2020, 29, 606-616.	7.6	3
52	Quantitative-enhancer-FACS-seq (QeFS) reveals epistatic interactions among motifs within transcriptional enhancers in developing Drosophila tissue. Genome Biology, 2021, 22, 348.	8.8	3
53	IDENTIFICATION OF CELL CYCLE-REGULATED, PUTATIVE HYPHAL GENES IN CANDIDA ALBICANS. , 2011, , .		2
54	FUNCTIONAL TRENDS IN STRUCTURAL CLASSES OF THE DNA BINDING DOMAINS OF REGULATORY		1

TRANSCRIPTION FACTORS., 2007, , .