Martin Pumera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/404984/publications.pdf

Version: 2024-02-01

891 papers 58,759 citations

112 h-index 195 g-index

951 all docs

951 docs citations

951 times ranked 45453 citing authors

#	Article	IF	CITATIONS
1	Lightâ€Driven Micromotors to Dissociate Protein Aggregates That Cause Neurodegenerative Diseases. Advanced Functional Materials, 2022, 32, 2106699.	7.8	29
2	Ultrasonically Propelled Micro―and Nanorobots. Advanced Functional Materials, 2022, 32, 2102265.	7.8	57
3	Hierarchical Atomic Layer Deposited V ₂ O ₅ on 3D Printed Nanocarbon Electrodes for Highâ€Performance Aqueous Zincâ€Ion Batteries. Small, 2022, 18, e2105572.	5.2	29
4	Edges are more electroactive than basal planes in synthetic bulk crystals of TiS2 and TiSe2. Applied Materials Today, 2022, 26, 101309.	2.3	2
5	2D MoS2/carbon/polylactic acid filament for 3D printing: Photo and electrochemical energy conversion and storage. Applied Materials Today, 2022, 26, 101301.	2.3	18
6	Collective behavior of magnetic microrobots through immuno-sandwich assay: On-the-fly COVID-19 sensing. Applied Materials Today, 2022, 26, 101337.	2.3	34
7	Autonomous self-propelled MnO2 micromotors for hormones removal and degradation. Applied Materials Today, 2022, 26, 101312.	2.3	7
8	Layered MAX phase electrocatalyst activity is driven by only a few hot spots. Journal of Materials Chemistry A, 2022, 10, 3206-3215.	5.2	8
9	Towards micromachine intelligence: potential of polymers. Chemical Society Reviews, 2022, 51, 1558-1572.	18.7	36
10	Selfâ€Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for "Enantiorecognitonâ€onâ€theâ€Fly― Angewandte Chemie, 2022, 134, .	1.6	3
11	Selfâ€Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for "Enantiorecognitionâ€onâ€theâ€Fly― Angewandte Chemie - International Edition, 2022, 61, e202116090.	7.2	25
12	Enzymeâ€Photocatalyst Tandem Microrobot Powered by Urea for <i>Escherichia coli</i> Biofilm Eradication. Small, 2022, 18, e2106612.	5.2	41
13	Two-dimensional vanadium sulfide flexible graphite/polymer films for near-infrared photoelectrocatalysis and electrochemical energy storage. Chemical Engineering Journal, 2022, 435, 135131.	6.6	12
14	Plasmonic-magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout. Applied Materials Today, 2022, 27, 101402.	2.3	23
15	Micromachines for Microplastics Treatment. ACS Nanoscience Au, 2022, 2, 225-232.	2.0	18
16	3Dâ€Printed SARSâ€CoVâ€2 RNA Genosensing Microfluidic System. Advanced Materials Technologies, 2022, 7, 2101121.	3.0	31
17	Nano/Microplastics Capture and Degradation by Autonomous Nano/Microrobots: A Perspective. Advanced Functional Materials, 2022, 32, .	7.8	35
18	Fluorinated MAX Phases for Photoelectrochemical Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2022, 10, 2793-2801.	3.2	11

#	Article	IF	CITATIONS
19	InnenrÃ1⁄4cktitelbild: Selfâ€Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for "Enantiorecognitonâ€onâ€theâ€Fly―(Angew. Chem. 14/2022). Angewandte Chemie, 2022, 1	34 <mark>,1.</mark> 6	0
20	Faceted Crystal Nanoarchitectonics of Organic–Inorganic 3D-Printed Visible-Light Photocatalysts. ACS Applied Energy Materials, 2022, 5, 3252-3258.	2.5	6
21	Pick up and dispose of pollutants from water via temperature-responsive micellar copolymers on magnetite nanorobots. Nature Communications, 2022, 13, 1026.	5.8	41
22	Flexible wearable MXene Ti3C2-Based power patch running on sweat. Biosensors and Bioelectronics, 2022, 205, 114092.	5.3	25
23	Biodegradable polyester platform for extrusion-based bioprinting. Bioprinting, 2022, 26, e00198.	2.9	5
24	Shape Engineering of TiO ₂ Microrobots for "Onâ€theâ€Fly―Optical Brake. Small, 2022, 18, e2106271.	5.2	18
25	Biotemplating of Metal–Organic Framework Nanocrystals for Applications in Smallâ€6cale Robotics. Advanced Functional Materials, 2022, 32, .	7.8	21
26	Shape-Controlled Self-Assembly of Light-Powered Microrobots into Ordered Microchains for Cells Transport and Water Remediation. ACS Nano, 2022, 16, 7615-7625.	7.3	38
27	Magnetic Biohybrid Robots as Efficient Drug Carrier to Generate Plant Cell Clones. Small, 2022, 18, e2200208.	5.2	6
28	Lightâ€Propelled Nanorobots for Facial Titanium Implants Biofilms Removal. Small, 2022, 18, e2200708.	5.2	26
29	Swarming Magnetic Photoactive Microrobots for Dental Implant Biofilm Eradication. ACS Nano, 2022, 16, 8694-8703.	7.3	37
30	Microrobotic carrier with enzymatically encoded drug release in the presence of pancreatic cancer cells via programmed self-destruction. Applied Materials Today, 2022, 27, 101494.	2.3	8
31	Fluorinated Transition Metal Carbides for Flexible Supercapacitors. ACS Applied Energy Materials, 2022, 5, 6353-6362.	2.5	6
32	Photoelectrolysis of TiO2 is Highly Localized and the Selectivity is Affected by the Light. Chemical Engineering Journal, 2022, , 136995.	6.6	5
33	Micro―and Nanorobots Meet DNA. Advanced Functional Materials, 2022, 32, .	7.8	17
34	Hybrid magneto-photocatalytic microrobots for sunscreens pollutants decontamination. Chemical Engineering Journal, 2022, 446, 137139.	6.6	7
35	Micellar Polymer Magnetic Microrobots as Efficient Nerve Agent Microcleaners. ACS Applied Materials & Samp; Interfaces, 2022, 14, 26128-26134.	4.0	5
36	Functional metal-based 3D-printed electronics engineering: Tunability and bio-recognition. Applied Materials Today, 2022, 28, 101519.	2.3	4

#	Article	IF	Citations
37	Dual polymer engineering enables high-performance 3D printed Zn-organic battery cathodes. Applied Materials Today, 2022, 28, 101515.	2.3	3
38	Photo-Responsive Doped 3D-Printed Copper Electrodes for Water Splitting: Refractory One-Pot Doping Dramatically Enhances the Performance. Journal of Physical Chemistry C, 2022, 126, 9016-9026.	1.5	10
39	Microrobotic photocatalyst on-the-fly: 1D/2D nanoarchitectonic hybrid-based layered metal thiophosphate magnetic micromachines for enhanced photodegradation of nerve agent. Chemical Engineering Journal, 2022, 446, 137342.	6.6	9
40	Al ₂ O ₃ /Covalent Organic Framework on 3D-Printed Nanocarbon Electrodes for Enhanced Biomarker Detection. ACS Applied Nano Materials, 2022, 5, 9719-9727.	2.4	5
41	Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nature Communications, 2022, 13, .	5 . 8	72
42	Design of bimetallic 3D-printed electrocatalysts via galvanic replacement to enhance energy conversion systems. Applied Catalysis B: Environmental, 2022, 316, 121609.	10.8	8
43	Fully Programmable Collective Behavior of Lightâ€Powered Chemical Microrobotics: pHâ€Dependent Motion Behavior Switch and Controlled Cancer Cell Destruction. Advanced Functional Materials, 2022, 32, .	7.8	9
44	Dip-coating of MXene and transition metal dichalcogenides on 3D-printed nanocarbon electrodes for the hydrogen evolution reaction. Electrochemistry Communications, 2021, 122, 106890.	2.3	36
45	Vanadium Dopants: A Boon or a Bane for Molybdenum Dichalcogenidesâ€Based Electrocatalysis Applications. Advanced Functional Materials, 2021, 31, 2009083.	7.8	14
46	Bistable (Supra)molecular Switches on 3D-Printed Responsive Interfaces with Electrical Readout. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12649-12655.	4.0	14
47	Recent advances of 3D printing in analytical chemistry: Focus on microfluidic, separation, and extraction devices. TrAC - Trends in Analytical Chemistry, 2021, 135, 116151.	5 . 8	76
48	Free-standing electrochemically coated MoS _x based 3D-printed nanocarbon electrode for solid-state supercapacitor application. Nanoscale, 2021, 13, 5744-5756.	2.8	52
49	Light-driven Ti ₃ C ₂ MXene micromotors: self-propelled autonomous machines for photodegradation of nitroaromatic explosives. Journal of Materials Chemistry A, 2021, 9, 14904-14910.	5. 2	26
50	High resolution electrochemical additive manufacturing of microstructured active materials: case study of MoS _{<i>x</i>} as a catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 22072-22081.	5.2	7
51	Atomic layer deposition of photoelectrocatalytic material on 3D-printed nanocarbon structures. Journal of Materials Chemistry A, 2021, 9, 11405-11414.	5.2	21
52	3D Printed Nanocarbon Frameworks for Liâ€lon Battery Cathodes. Advanced Functional Materials, 2021, 31, 2007285.	7.8	37
53	Functionalized 2D Germanene and Silicene Enzymatic System. Advanced Functional Materials, 2021, 31, 2011125.	7.8	30
54	Chiral 3Dâ€printed Bioelectrodes. Advanced Functional Materials, 2021, 31, 2010608.	7.8	26

#	Article	IF	CITATIONS
55	Rhenium Doping of Layered Transition-Metal Diselenides Triggers Enhancement of Photoelectrochemical Activity. ACS Nano, 2021, 15, 2374-2385.	7.3	19
56	MXene-functionalised 3D-printed electrodes for electrochemical capacitors. Electrochemistry Communications, 2021, 124, 106920.	2.3	34
57	Chiral Protein–Covalent Organic Framework 3D-Printed Structures as Chiral Biosensors. Analytical Chemistry, 2021, 93, 5277-5283.	3.2	61
58	Magnetically Driven Micro and Nanorobots. Chemical Reviews, 2021, 121, 4999-5041.	23.0	345
59	3Dâ€Printing to Mitigate COVIDâ€19 Pandemic. Advanced Functional Materials, 2021, 31, 2100450.	7.8	43
60	Electrocatalytic activity of layered MAX phases for the hydrogen evolution reaction. Electrochemistry Communications, 2021, 125, 106977.	2.3	26
61	Breaking Polymer Chains with Selfâ€Propelled Lightâ€Controlled Navigable Hematite Microrobots. Advanced Functional Materials, 2021, 31, 2101510.	7.8	58
62	Active Lightâ€Powered Antibiofilm ZnO Micromotors with Chemically Programmable Properties. Advanced Functional Materials, 2021, 31, 2101178.	7.8	52
63	3D-printed nanocarbon sensors for the detection of chlorophenols and nitrophenols: Towards environmental applications of additive manufacturing. Electrochemistry Communications, 2021, 125, 106984.	2.3	11
64	Graphene Oxide Mimics Biological Signaling Cue to Rescue Starving Bacteria. Advanced Functional Materials, 2021, 31, 2102328.	7.8	3
65	Green activation using reducing agents of carbon-based 3D printed electrodes: Turning good electrodes to great. Carbon, 2021, 175, 413-419.	5.4	47
66	3D Printing Temperature Tailors Electrical and Electrochemical Properties through Changing Inner Distribution of Graphite/Polymer. Small, 2021, 17, e2101233.	5.2	26
67	Sixâ€Degreeâ€ofâ€Freedom Steerable Visibleâ€Lightâ€Driven Microsubmarines Using Water as a Fuel: Application for Explosives Decontamination. Small, 2021, 17, e2100294.	n 5.2	22
68	A Maze in Plastic Wastes: Autonomous Motile Photocatalytic Microrobots against Microplastics. ACS Applied Materials & District Services, 2021, 13, 25102-25110.	4.0	53
69	MXene and MoS _{3â^'} <i></i> Coated 3Dâ€Printed Hybrid Electrode for Solidâ€State Asymmetric Supercapacitor. Small Methods, 2021, 5, e2100451.	4.6	56
70	Two-Dimensional Functionalized Germananes as Photoelectrocatalysts. ACS Nano, 2021, 15, 11681-11693.	7. 3	25
71	Multiresponsive 2D Ti ₃ C ₂ T _{<i>x</i>} MXene <i>via</i> Implanting Molecular Properties. ACS Nano, 2021, 15, 10067-10075.	7.3	16
72	Reconstructed Bismuthâ∈Based Metalâ^'Organic Framework Nanofibers for Selective CO ₂ â€toâ€Formate Conversion: Morphology Engineering. ChemSusChem, 2021, 14, 3402-3412.	3.6	28

#	Article	IF	Citations
73	Efficient Protein Transfection by Swarms of Chemically Powered Plasmonic Virus-Sized Nanorobots. ACS Nano, 2021, 15, 12899-12910.	7.3	16
74	Catalyst Formation and <i>In Operando</i> Monitoring of the Electrocatalytic Activity in Flow Reactors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 35777-35784.	4.0	8
75	Flexible Graphite–Poly(Lactic Acid) Composite Films as Large-Area Conductive Electrodes for Energy Applications. ACS Applied Energy Materials, 2021, 4, 6975-6981.	2.5	13
76	Silicane Derivative Increases Doxorubicin Efficacy in an Ovarian Carcinoma Mouse Model: Fighting Drug Resistance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31355-31370.	4.0	5
77	Applications of Atomic Layer Deposition in Design of Systems for Energy Conversion. Small, 2021, 17, e2102088.	5.2	26
78	Realâ€Time Biomonitoring Device Based on 2D Black Phosphorus and Polyaniline Nanocomposite Flexible Supercapacitors. Small, 2021, 17, e2102337.	5.2	27
79	Self-Propelled Activated Carbon Micromotors for "On-the-Fly―Capture of Nitroaromatic Explosives. Journal of Physical Chemistry C, 2021, 125, 18040-18045.	1.5	11
80	Swarming Aqua Sperm Micromotors for Active Bacterial Biofilms Removal in Confined Spaces. Advanced Science, 2021, 8, e2101301.	5.6	30
81	Microplastic Removal and Degradation by Musselâ€Inspired Adhesive Magnetic/Enzymatic Microrobots. Small Methods, 2021, 5, e2100230.	4.6	67
82	Doping and Decorating 2D Materials for Biosensing: Benefits and Drawbacks. Advanced Functional Materials, 2021, 31, 2102555.	7.8	23
83	Layered transition metal selenophosphites for visible light photoelectrochemical production of hydrogen. Electrochemistry Communications, 2021, 129, 107077.	2.3	7
84	Nickel Sulfide Microrockets as Selfâ€Propelled Energy Storage Devices to Power Electronic Circuits "Onâ€Demand― Small Methods, 2021, 5, e2100511.	4.6	16
85	3D-printed transmembrane glycoprotein cancer biomarker aptasensor. Applied Materials Today, 2021, 24, 101153.	2.3	9
86	Atomic layer deposition of electrocatalytic layer of MoS2 onto metal-based 3D-printed electrode toward tailoring hydrogen evolution efficiency. Applied Materials Today, 2021, 24, 101131.	2.3	8
87	Smart Energy Bricks: Ti ₃ C ₂ @Polymer Electrochemical Energy Storage inside Bricks by 3D Printing. Advanced Functional Materials, 2021, 31, 2106990.	7.8	26
88	Versatile Design of Functional Organic–Inorganic 3Dâ€Printed (Opto)Electronic Interfaces with Custom Catalytic Activity. Small, 2021, 17, e2103189.	5.2	14
89	Photoâ€Fenton Degradation of Nitroaromatic Explosives by Lightâ€Powered Hematite Microrobots: When Higher Speed Is Not What We Go For. Small Methods, 2021, 5, e2100617.	4.6	22
90	3D-Printed COVID-19 immunosensors with electronic readout. Chemical Engineering Journal, 2021, 425, 131433.	6.6	54

#	Article	IF	Citations
91	Organic photoelectrode engineering: accelerating photocurrent generation ⟨i⟩via⟨ i⟩ donor–acceptor interactions and surface-assisted synthetic approach. Journal of Materials Chemistry A, 2021, 9, 7162-7171.	5.2	13
92	Oxygen evolution catalysts under proton exchange membrane conditions in a conventional three electrode cell <i>vs.</i> electrolyser device: a comparison study and a 3D-printed electrolyser for academic labs. Journal of Materials Chemistry A, 2021, 9, 9113-9123.	5.2	24
93	Local electrochemical activity of transition metal dichalcogenides and their heterojunctions on 3D-printed nanocarbon surfaces. Nanoscale, 2021, 13, 5324-5332.	2.8	15
94	Atomic Layer Deposition of Electrocatalytic Insulator Al ₂ O ₃ on Three-Dimensional Printed Nanocarbons. ACS Nano, 2021, 15, 686-697.	7.3	28
95	Two-dimensional materials in biomedical, biosensing and sensing applications. Chemical Society Reviews, 2021, 50, 619-657.	18.7	265
96	3D printing of functional microrobots. Chemical Society Reviews, 2021, 50, 2794-2838.	18.7	178
97	Covalently modified enzymatic 3D-printed bioelectrode. Mikrochimica Acta, 2021, 188, 374.	2.5	12
98	Hybrid Inorganic–Organic Visible-Light-Driven Microrobots Based on Donor–Acceptor Organic Polymer for Degradation of Toxic Psychoactive Substances. ACS Nano, 2021, 15, 18458-18468.	7. 3	13
99	Fully metallic copper 3D-printed electrodes via sintering for electrocatalytic biosensing. Applied Materials Today, 2021, 25, 101253.	2.3	20
100	Tailorable nanostructured mercury/gold amalgam electrode arrays with varied surface areas and compositions. Sensors and Actuators B: Chemical, 2020, 302, 127175.	4.0	1
101	Lightâ€Driven ZnO Brushâ€Shaped Selfâ€Propelled Micromachines for Nitroaromatic Explosives Decomposition. Small, 2020, 16, e1902944.	5.2	36
102	Functional 2D Germanene Fluorescent Coating of Microrobots for Micromachines Multiplexing. Small, 2020, 16, e1902365.	5.2	31
103	Photocatalytic Micromotors Activated by UV to Visible Light for Environmental Remediation, Micropumps, Reversible Assembly, Transportation, and Biomimicry. Small, 2020, 16, e1903179.	5.2	77
104	Tailoring Metal/TiO ₂ Interface to Influence Motion of Lightâ€Activated Janus Micromotors. Advanced Functional Materials, 2020, 30, 1908614.	7.8	65
105	Advances of 2D bismuth in energy sciences. Chemical Society Reviews, 2020, 49, 263-285.	18.7	138
106	Inherent impurities in 3D-printed electrodes are responsible for catalysis towards water splitting. Journal of Materials Chemistry A, 2020, 8, 1120-1126.	5.2	57
107	Electrochemically driven multi-material 3D-printing. Applied Materials Today, 2020, 18, 100530.	2.3	21
108	3D-printed graphene direct electron transfer enzyme biosensors. Biosensors and Bioelectronics, 2020, 151, 111980.	5.3	113

#	Article	IF	Citations
109	Selfâ€Propelled Tags for Protein Detection. Advanced Functional Materials, 2020, 30, 1906449.	7.8	39
110	Hexagonal and Cubic Boron Nitride in Bulk and Nanosized Forms and Their Capacitive Behavior. ChemElectroChem, 2020, 7, 74-77.	1.7	6
111	Metal-plated 3D-printed electrode for electrochemical detection of carbohydrates. Electrochemistry Communications, 2020, 120, 106827.	2.3	46
112	Layered black phosphorus as a reducing agent $\hat{a} \in \text{``decoration with group 10 elements. RSC Advances, 2020, 10, 36452-36458.}$	1.7	5
113	Flexible energy generation and storage devices: focus on key role of heterocyclic solid-state organic ionic conductors. Chemical Society Reviews, 2020, 49, 7819-7844.	18.7	27
114	Arsenene nanomotors as anticancer drug carrier. Applied Materials Today, 2020, 21, 100819.	2.3	11
115	ReS ₂ : A High-Rate Pseudocapacitive Energy Storage Material. ACS Applied Energy Materials, 2020, 3, 10261-10269.	2.5	15
116	Boron and nitrogen dopants in graphene have opposite effects on the electrochemical detection of explosive nitroaromatic compounds. Electrochemistry Communications, 2020, 112, 106660.	2.3	15
117	Uranium detection by 3D-printed titanium structures: Towards decentralized nuclear forensic applications. Applied Materials Today, 2020, 21, 100881.	2.3	2
118	Chemically programmable microrobots weaving a web from hormones. Nature Machine Intelligence, 2020, 2, 711-718.	8.3	46
119	Near-Atomic-Thick Bismuthene Oxide Microsheets for Flexible Aqueous Anodes: Boosted Performance upon 3D â†' 2D Transition. ACS Applied Materials & Interfaces, 2020, 12, 55936-55944.	4.0	13
120	MXene-Based Flexible Supercapacitors: Influence of an Organic Ionic Conductor Electrolyte on the Performance. ACS Applied Materials & Samp; Interfaces, 2020, 12, 53039-53048.	4.0	42
121	Multifunctional Visibleâ€Light Powered Micromotors Based on Semiconducting Sulfur―and Nitrogenâ€Containing Donor–Acceptor Polymer. Advanced Functional Materials, 2020, 30, 2002701.	7.8	42
122	Bismuthene Microsheets: Bismuthene Metallurgy: Transformation of Bismuth Particles to Ultrahighâ€Aspectâ€Ratio 2D Microsheets (Small 29/2020). Small, 2020, 16, 2070163.	5.2	0
123	Chemical Microrobots as Self-Propelled Microbrushes against Dental Biofilm. Cell Reports Physical Science, 2020, 1, 100181.	2.8	40
124	Frontispiece: Biocatalytic Micro―and Nanomotors. Chemistry - A European Journal, 2020, 26, .	1.7	1
125	Swarming of Perovskiteâ€Like Bi ₂ WO ₆ Microrobots Destroy Textile Fibers under Visible Light. Advanced Functional Materials, 2020, 30, 2007073.	7.8	48
126	Integrated Biomonitoring Sensing with Wearable Asymmetric Supercapacitors Based on Ti ₃ C ₂ MXene and 1Tâ€Phase WS ₂ Nanosheets. Advanced Functional Materials, 2020, 30, 2003673.	7.8	80

#	Article	IF	Citations
127	Structural Manipulation of Layered TiS ₂ to TiS ₃ Nanobelts through Niobium Doping for Highâ€Performance Supercapacitors. ChemElectroChem, 2020, 7, 4985-4989.	1.7	2
128	Inherent Impurities in Graphene/Polylactic Acid Filament Strongly Influence on the Capacitive Performance of 3Dâ€Printed Electrode. Chemistry - A European Journal, 2020, 26, 15746-15753.	1.7	34
129	Corrosion of light powered Pt/TiO2 microrobots. Applied Materials Today, 2020, 20, 100659.	2.3	11
130	Metal–organic-frameworks on 3D-printed electrodes: <i>in situ</i> electrochemical transformation towards the oxygen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 3732-3738.	2.5	15
131	A highly sensitive enzyme-less glucose sensor based on pnictogens and silver shell–gold core nanorod composites. Chemical Communications, 2020, 56, 7909-7912.	2.2	16
132	Materials Electrochemists' Never-Ending Quest for Efficient Electrocatalysts: The Devil Is in the Impurities. ACS Catalysis, 2020, 10, 7087-7092.	5.5	41
133	Cancer Cells Microsurgery <i>via</i> Asymmetric Bent Surface Au/Ag/Ni Microrobotic Scalpels Through a Transversal Rotating Magnetic Field. ACS Nano, 2020, 14, 8247-8256.	7.3	92
134	Prospects for Functionalizing Elemental 2D Pnictogens: A Study of Molecular Models. ACS Nano, 2020, 14, 7722-7733.	7.3	13
135	3D-printed biosensors for electrochemical and optical applications. TrAC - Trends in Analytical Chemistry, 2020, 128, 115933.	5.8	92
136	2D Germanane Derivative as a Vector for Overcoming Doxorubicin Resistance in Cancer Cells. Applied Materials Today, 2020, 20, 100697.	2.3	8
137	Low-temperature synthesis and electrocatalytic application of large-area PtTe ₂ thin films. Nanotechnology, 2020, 31, 375601.	1.3	23
138	Bismuthene Metallurgy: Transformation of Bismuth Particles to Ultrahighâ€Aspectâ€Ratio 2D Microsheets. Small, 2020, 16, e2002037.	5.2	14
139	Tunable Roomâ€Temperature Synthesis of ReS ₂ Bicatalyst on 3D―and 2Dâ€Printed Electrodes for Photo―and Electrochemical Energy Applications. Advanced Functional Materials, 2020, 30, 1910193.	7.8	45
140	Layered platinum dichalcogenides (PtS2, PtSe2, PtTe2) for non-enzymatic electrochemical sensor. Applied Materials Today, 2020, 19, 100606.	2.3	11
141	Microrobots Derived from Variety Plant Pollen Grains for Efficient Environmental Clean Up and as an Antiâ€Cancer Drug Carrier. Advanced Functional Materials, 2020, 30, 2000112.	7.8	64
142	Droplet-based differential microcalorimeter for real-time energy balance monitoring. Sensors and Actuators B: Chemical, 2020, 312, 127967.	4.0	6
143	Confined Bubbleâ€Propelled Microswimmers in Capillaries: Wall Effect, Fuel Deprivation, and Exhaust Product Excess. Small, 2020, 16, 2000413.	5.2	8
144	Biocatalytic Micro―and Nanomotors. Chemistry - A European Journal, 2020, 26, 11085-11092.	1.7	27

#	Article	IF	Citations
145	Accounts in 3Dâ€Printed Electrochemical Sensors: Towards Monitoring of Environmental Pollutants. ChemElectroChem, 2020, 7, 3404-3413.	1.7	43
146	Smartdust 3Dâ€Printed Grapheneâ€Based Al/Ga Robots for Photocatalytic Degradation of Explosives. Small, 2020, 16, 2002111.	5.2	22
147	Niobium-doped TiS2: Formation of TiS3 nanobelts and their effects in enzymatic biosensors. Biosensors and Bioelectronics, 2020, 155, 112114.	5.3	19
148	Active Anion Delivery by Self-Propelled Microswimmers. ACS Nano, 2020, 14, 3434-3441.	7.3	34
149	3D Printing for Electrochemical Energy Applications. Chemical Reviews, 2020, 120, 2783-2810.	23.0	255
150	Will Any Crap We Put into Graphene Increase Its Electrocatalytic Effect?. ACS Nano, 2020, 14, 21-25.	7.3	158
151	Nanorobots: Machines Squeezed between Molecular Motors and Micromotors. CheM, 2020, 6, 867-884.	5.8	56
152	MXene Titanium Carbide-based Biosensor: Strong Dependence of Exfoliation Method on Performance. Analytical Chemistry, 2020, 92, 2452-2459.	3.2	155
153	Bipolar Electrochemistry Exfoliation of Layered Metal Chalcogenides Sb ₂ S ₃ and Bi ₂ S ₃ and their Hydrogen Evolution Applications. Chemistry - A European Journal, 2020, 26, 6479-6483.	1.7	15
154	Structural transition induced by niobium doping in layered titanium disulfide: The impact on electrocatalytic performance. Applied Materials Today, 2020, 19, 100555.	2.3	5
155	Microrobots in Brewery: Dual Magnetic/Lightâ€Powered Hybrid Microrobots for Preventing Microbial Contamination in Beer. Chemistry - A European Journal, 2020, 26, 3039-3043.	1.7	24
156	3D-printed electrodes for the detection of mycotoxins in food. Electrochemistry Communications, 2020, 115, 106735.	2.3	28
157	Siloxene, Germanane, and Methylgermanane: Functionalized 2D Materials of Group 14 for Electrochemical Applications. Advanced Functional Materials, 2020, 30, 1910186.	7.8	44
158	Nanorobots: Machines Squeezed between Molecular Motors and Micromotors. CheM, 2020, 6, 1032.	5.8	9
159	Positive and Negative Effects of Dopants toward Electrocatalytic Activity of MoS ₂ and WS ₂ : Experiments and Theory. ACS Applied Materials & Dopants & Dopan	4.0	38
160	Coordinated behaviors of artificial micro/nanomachines: from mutual interactions to interactions with the environment. Chemical Society Reviews, 2020, 49, 3211-3230.	18.7	91
161	Towards Antimonene and 2D Antimony Telluride through Electrochemical Exfoliation. Chemistry - A European Journal, 2020, 26, 6583-6590.	1.7	32
162	Catalyst coating of 3D printed structures via electrochemical deposition: Case of the transition metal chalcogenide MoSx for hydrogen evolution reaction. Applied Materials Today, 2020, 20, 100654.	2.3	35

#	Article	IF	CITATIONS
163	Tailoring capacitance of 3D-printed graphene electrodes by carbonisation temperature. Nanoscale, 2020, 12, 19673-19680.	2.8	28
164	Atomically Thin 2Dâ€Arsenene by Liquidâ€Phased Exfoliation: Toward Selective Vapor Sensing. Advanced Functional Materials, 2019, 29, 1807004.	7.8	80
165	Cyanographene and Graphene Acid: The Functional Group of Graphene Derivative Determines the Application in Electrochemical Sensing and Capacitors. ChemElectroChem, 2019, 6, 229-234.	1.7	27
166	Supercapacitors in Motion: Autonomous Microswimmers for Naturalâ€Resource Recovery. Angewandte Chemie - International Edition, 2019, 58, 13340-13344.	7.2	14
167	Supercapacitors in Motion: Autonomous Microswimmers for Naturalâ€Resource Recovery. Angewandte Chemie, 2019, 131, 13474-13478.	1.6	2
168	Biomedical and bioimaging applications of 2D pnictogens and transition metal dichalcogenides. Nanoscale, 2019, 11, 15770-15782.	2.8	22
169	Germanane synthesis with simultaneous covalent functionalization: towards highly functionalized fluorescent germananes. Nanoscale, 2019, 11, 19327-19333.	2.8	17
170	Cloisite Microrobots as Self-Propelling Cleaners for Fast and Efficient Removal of Improvised Organophosphate Nerve Agents. ACS Applied Materials & Samp; Interfaces, 2019, 11, 31832-31843.	4.0	15
171	Fuel-free light-driven micro/nanomachines: artificial active matter mimicking nature. Chemical Society Reviews, 2019, 48, 4966-4978.	18.7	165
172	2D Stacks of MXene Ti ₃ C ₂ and 1Tâ€Phase WS ₂ with Enhanced Capacitive Behavior. ChemElectroChem, 2019, 6, 3982-3986.	1.7	39
173	In Situ Doping of Black Phosphorus by High-Pressure Synthesis. Inorganic Chemistry, 2019, 58, 10227-10238.	1.9	20
174	Micromotors as "Motherships― A Concept for the Transport, Delivery, and Enzymatic Release of Molecular Cargo via Nanoparticles. Langmuir, 2019, 35, 10618-10624.	1.6	18
175	Selfâ€Propelled 3Dâ€Printed "Aircraft Carrier―of Lightâ€Powered Smart Micromachines for Largeâ€Volume Nitroaromatic Explosives Removal. Advanced Functional Materials, 2019, 29, 1903872.	7.8	40
176	Visible-Light-Driven Single-Component BiVO ₄ Micromotors with the Autonomous Ability for Capturing Microorganisms. ACS Nano, 2019, 13, 8135-8145.	7.3	110
177	Tailoring: Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty (Adv. Energy Mater. 26/2019). Advanced Energy Materials, 2019, 9, 1970102.	10.2	10
178	Exfoliated transition metal dichalcogenide (MX2; $M = Mo$, W ; $X = S$, Se , Te) nanosheets and their composites with polyaniline nanofibers for electrochemical capacitors. Applied Materials Today, 2019, 16, 280-289.	2.3	28
179	Binary Phosphorene Redox Behavior in Oxidoreductase Enzymatic Systems. ACS Nano, 2019, 13, 13217-13224.	7.3	22
180	Radioactive Uranium Preconcentration <i>via</i> Self-Propelled Autonomous Microrobots Based on Metal–Organic Frameworks. ACS Nano, 2019, 13, 11477-11487.	7.3	90

#	Article	IF	CITATIONS
181	Emerging mono-elemental 2D nanomaterials for electrochemical sensing applications: From borophene to bismuthene. TrAC - Trends in Analytical Chemistry, 2019, 121, 115696.	5.8	31
182	Smart Robots: Selfâ€Propelled 3Dâ€Printed "Aircraft Carrier―of Lightâ€Powered Smart Micromachines for Largeâ€Volume Nitroaromatic Explosives Removal (Adv. Funct. Mater. 39/2019). Advanced Functional Materials, 2019, 29, 1970267.	7.8	2
183	Electrocatalysis: Exfoliated Layered Manganese Trichalcogenide Phosphite (MnP <i>X</i> ₃ ,) Tj ETQq1	1 0.7843 7.8	14 rgBT /0 1
184	Antimony Chalcogenide van der Waals Nanostructures for Energy Conversion and Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 15790-15798.	3.2	24
185	Coordination chemistry of 2D and layered gray arsenic: photochemical functionalization with chromium hexacarbonyl. NPG Asia Materials, $2019,11,.$	3.8	10
186	2H and 2H/1T-Transition Metal Dichalcogenide Films Prepared via Powderless Gas Deposition for the Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 16440-16449.	3.2	10
187	MAX and MAB Phases: Two-Dimensional Layered Carbide and Boride Nanomaterials for Electrochemical Applications. ACS Applied Nano Materials, 2019, 2, 6010-6021.	2.4	47
188	Preserving Fine Structure Details and Dramatically Enhancing Electron Transfer Rates in Graphene 3D-Printed Electrodes via Thermal Annealing: Toward Nitroaromatic Explosives Sensing. ACS Applied Materials & Details & Accordance (2019), 11, 35371-35375.	4.0	82
189	Nanomotor tracking experiments at the edge of reproducibility. Scientific Reports, 2019, 9, 13222.	1.6	28
190	Self-Propelled Autonomous Mg/Pt Janus Micromotor Interaction with Human Cells. Bulletin of the Chemical Society of Japan, 2019, 92, 1754-1758.	2.0	41
191	MnPS3 shows anticancer behaviour towards lung cancer cells. FlatChem, 2019, 18, 100134.	2.8	5
192	Micro/nanomachines: what is needed for them to become a real force in cancer therapy?. Nanoscale, 2019, 11, 6519-6532.	2.8	46
193	Metal–Organic Frameworks Based Nano/Micro/Millimeterâ€ S ized Selfâ€Propelled Autonomous Machines. Advanced Materials, 2019, 31, e1806530.	11.1	59
194	Mix-and-Read No-Wash Fluorescence DNA Sensing System Using Graphene Oxide: Analytical Performance of Fresh Versus Aged Dispersions. ACS Omega, 2019, 4, 1611-1616.	1.6	4
195	Layered and two dimensional metal oxides for electrochemical energy conversion. Energy and Environmental Science, 2019, 12, 41-58.	15.6	310
196	Plasmonic Selfâ€Propelled Nanomotors for Explosives Detection via Solutionâ€Based Surface Enhanced Raman Scattering. Advanced Functional Materials, 2019, 29, 1903041.	7.8	35
197	Proteinase-sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures. Nanoscale, 2019, 11, 12124-12131.	2.8	84
198	Lightâ€Driven Sandwich ZnO/TiO ₂ /Pt Janus Micromotors: Schottky Barrier Suppression by Addition of TiO ₂ Atomic Interface Layers into ZnO/Pt Micromachines Leading to Enhanced Fuelâ€Free Propulsion. Small Methods, 2019, 3, 1900258.	4.6	17

#	Article	IF	Citations
199	Impurities in graphene/PLA 3D-printing filaments dramatically influence the electrochemical properties of the devices. Chemical Communications, 2019, 55, 8374-8377.	2.2	47
200	Flexible Pt/Graphene Foil Containing only 6.6 wt % of Pt has a Comparable Hydrogen Evolution Reaction Performance to Platinum Metal. ACS Sustainable Chemistry and Engineering, 2019, 7, 11721-11727.	3.2	8
201	Catalytic hydrogen evolution reaction on "metal-free―graphene: key role of metallic impurities. Nanoscale, 2019, 11, 11083-11085.	2.8	19
202	Edge vs. basal plane electrochemistry of layered pnictogens (As, Sb, Bi): Does edge always offer faster electron transfer?. Applied Materials Today, 2019, 16, 179-184.	2.3	8
203	Selenium covalently modified graphene: towards gas sensing. 2D Materials, 2019, 6, 034006.	2.0	4
204	Thiographene synthesized from fluorographene <i>via</i> xanthogenate with immobilized enzymes for environmental remediation. Nanoscale, 2019, 11, 10695-10701.	2.8	8
205	Electrochemistry of Layered Semiconducting A ^{III} B ^{VI} Chalcogenides: Indium Monochalcogenides (InS, InSe, InTe). ChemCatChem, 2019, 11, 2634-2642.	1.8	20
206	Layered Crystalline and Amorphous Platinum Disulfide (PtS ₂): Contrasting Electrochemistry. Chemistry - A European Journal, 2019, 25, 7330-7338.	1.7	20
207	3D-printed Ag/AgCl pseudo-reference electrodes. Electrochemistry Communications, 2019, 103, 104-108.	2.3	66
208	MoS ₂ versatile spray-coating of 3D electrodes for the hydrogen evolution reaction. Nanoscale, 2019, 11, 9888-9895.	2.8	24
209	Atomic Layer Deposition as a General Method Turns any 3Dâ€Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty. Advanced Energy Materials, 2019, 9, 1900994.	10.2	28
210	Recyclable nanographene-based micromachines for the on-the-fly capture of nitroaromatic explosives. Nanoscale, 2019, 11, 8825-8834.	2.8	28
211	Chemistry of Layered Pnictogens: Phosphorus, Arsenic, Antimony, and Bismuth. Angewandte Chemie, 2019, 131, 7631-7637.	1.6	14
212	Micromotor-Assisted Human Serum Glucose Biosensing. Analytical Chemistry, 2019, 91, 5660-5666.	3.2	83
213	Chemistry of Layered Pnictogens: Phosphorus, Arsenic, Antimony, and Bismuth. Angewandte Chemie - International Edition, 2019, 58, 7551-7557.	7.2	48
214	Smart Microdevices Laying "Breadcrumbs―to Find the Way Home: Chemotactic Homing TiO 2 /Pt Janus Microrobots. Chemistry - an Asian Journal, 2019, 14, 2456-2459.	1.7	9
215	Fluorine saturation on thermally reduced graphene. Applied Materials Today, 2019, 15, 343-349.	2.3	8
216	<i>In My Element</i> : Manganese. Chemistry - A European Journal, 2019, 25, 6251-6251.	1.7	0

#	Article	IF	Citations
217	Recoverable Bismuth-Based Microrobots: Capture, Transport, and On-Demand Release of Heavy Metals and an Anticancer Drug in Confined Spaces. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13359-13369.	4.0	42
218	Catalytic and Lightâ€Driven ZnO/Pt Janus Nano/Micromotors: Switching of Motion Mechanism via Interface Roughness and Defect Tailoring at the Nanoscale. Advanced Functional Materials, 2019, 29, 1808678.	7.8	74
219	The capacitance and electron transfer of 3D-printed graphene electrodes are dramatically influenced by the type of solvent used for pre-treatment. Electrochemistry Communications, 2019, 102, 83-88.	2.3	96
220	Three-dimensionally printed electrochemical systems for biomedical analytical applications. Current Opinion in Electrochemistry, 2019, 14, 133-137.	2.5	35
221	Graphene Oxide Nanoplatelets Potentiate Anticancer Effect of Cisplatin in Human Lung Cancer Cells. Langmuir, 2019, 35, 3176-3182.	1.6	48
222	Two-Dimensional Materials on the Rocks: Positive and Negative Role of Dopants and Impurities in Electrochemistry. ACS Nano, 2019, 13, 2681-2728.	7.3	62
223	A Metalâ€Doped Fungiâ€Based Biomaterial for Advanced Electrocatalysis. Chemistry - A European Journal, 2019, 25, 3828-3834.	1.7	2
224	Exfoliation of Calcium Germanide by Alkyl Halides. Chemistry of Materials, 2019, 31, 10126-10134.	3.2	18
225	Interaction of single- and double-stranded DNA with multilayer MXene by fluorescence spectroscopy and molecular dynamics simulations. Chemical Science, 2019, 10, 10010-10017.	3.7	59
226	Chemotaktische Mikro―und Nanomaschinen. Angewandte Chemie, 2019, 131, 2212-2218.	1.6	7
227	Chemotactic Micro―and Nanodevices. Angewandte Chemie - International Edition, 2019, 58, 2190-2196.	7.2	25
228	Pnictogenâ€Based Enzymatic Phenol Biosensors: Phosphorene, Arsenene, Antimonene, and Bismuthene. Angewandte Chemie - International Edition, 2019, 58, 134-138.	7.2	96
229	Exfoliated Layered Manganese Trichalcogenide Phosphite (MnP <i>X</i> ₃ , <i>X</i> = S, Se) as Electrocatalytic van der Waals Materials for Hydrogen Evolution. Advanced Functional Materials, 2019, 29, 1805975.	7.8	85
230	Pnictogenâ€Based Enzymatic Phenol Biosensors: Phosphorene, Arsenene, Antimonene, and Bismuthene. Angewandte Chemie, 2019, 131, 140-144.	1.6	4
231	Cytotoxicity of Shear Exfoliated Pnictogen (As, Sb, Bi) Nanosheets. Chemistry - A European Journal, 2019, 25, 2242-2249.	1.7	34
232	Ultrapure Graphene Is a Poor Electrocatalyst: Definitive Proof of the Key Role of Metallic Impurities in Graphene-Based Electrocatalysis. ACS Nano, 2019, 13, 1574-1582.	7.3	92
233	Observed Dramatically Improved Catalysis of Ag Shell on Au/Ag Coreâ€shell Nanorods is Due to Silver Impurities Released During Etching Process. Electroanalysis, 2019, 31, 1873-1877.	1.5	1
234	Black Phosphorus Cytotoxicity Assessments Pitfalls: Advantages and Disadvantages of Metabolic and Morphological Assays. Chemistry - A European Journal, 2019, 25, 349-360.	1.7	18

#	Article	IF	CITATIONS
235	Ultrafast Electrochemical Trigger Drug Delivery Mechanism for Nanographene Micromachines. Advanced Functional Materials, 2019, 29, 1806696.	7.8	78
236	Platinum–Halloysite Nanoclay Nanojets as Sensitive and Selective Mobile Nanosensors for Mercury Detection. Advanced Materials Technologies, 2019, 4, 1800502.	3.0	21
237	Micro/Nanomotors for Water Purification. Chemistry - A European Journal, 2019, 25, 106-121.	1.7	78
238	Metal Phosphorous Trichalcogenides (MPCh ₃): From Synthesis to Contemporary Energy Challenges. Angewandte Chemie - International Edition, 2019, 58, 9326-9337.	7.2	73
239	Metallâ€Phosphorâ€Trichalkogenide (MPCh 3): von der Synthese zu aktuellen Energieanwendungen. Angewandte Chemie, 2019, 131, 9426-9438.	1.6	5
240	In vitro cytotoxicity of covalently protected layered molybdenum disulfide. Applied Materials Today, 2018, 11, 200-206.	2.3	19
241	Tunable Pt–MoS _{<i>x</i>} Hybrid Catalysts for Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2018, 10, 8702-8711.	4.0	58
242	Frontispiece: Chemistry of Graphene Derivatives: Synthesis, Applications, and Perspectives. Chemistry - A European Journal, 2018, 24, .	1.7	0
243	The chemistry of CVD graphene. Journal of Materials Chemistry C, 2018, 6, 6082-6101.	2.7	95
244	3D-Printed Graphene/Polylactic Acid Electrodes Promise High Sensitivity in Electroanalysis. Analytical Chemistry, 2018, 90, 5753-5757.	3.2	205
245	Hydrogenation of Fluorographite and Fluorographene: An Easy Way to Produce Highly Hydrogenated Graphene. Chemistry - A European Journal, 2018, 24, 8350-8360.	1.7	6
246	(Bio)Analytical chemistry enabled by 3D printing: Sensors and biosensors. TrAC - Trends in Analytical Chemistry, 2018, 103, 110-118.	5.8	166
247	Morphologyâ€Dependent Magnetism in Nanographene: Beyond Nanoribbons. Advanced Functional Materials, 2018, 28, 1800592.	7.8	5
248	Nonconductive layered hexagonal boron nitride exfoliation by bipolar electrochemistry. Nanoscale, 2018, 10, 7298-7303.	2.8	51
249	Polymer platforms for micro- and nanomotor fabrication. Nanoscale, 2018, 10, 7332-7342.	2.8	22
250	Cation-Controlled Electrocatalytical Activity of Transition-Metal Disulfides. ACS Catalysis, 2018, 8, 2774-2781.	5 . 5	58
251	Inverse Opal-like Porous MoSe _{<i>x</i>} Films for Hydrogen Evolution Catalysis: Overpotential-Pore Size Dependence. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4937-4945.	4.0	36
252	3Dâ€printed Electrodes for Sensing of Biologically Active Molecules. Electroanalysis, 2018, 30, 1319-1326.	1.5	50

#	Article	IF	Citations
253	Black Phosphorus Synthesis Path Strongly Influences Its Delamination, Chemical Properties and Electrochemical Performance. ACS Applied Energy Materials, 2018, 1, 503-509.	2.5	19
254	Morphological Effects and Stabilization of the Metallic 1T Phase in Layered Vâ€, Nbâ€, and Taâ€Doped WSe ₂ for Electrocatalysis. Chemistry - A European Journal, 2018, 24, 3199-3208.	1.7	38
255	Micro/Nanomachines and Living Biosystems: From Simple Interactions to Microcyborgs. Advanced Functional Materials, 2018, 28, 1705421.	7.8	99
256	Corrosion due to ageing influences the performance of tubular platinum microrobots. Nanoscale, 2018, 10, 1322-1325.	2.8	8
257	Frontispiece: Nanohybrids of Twoâ€Dimensional Transitionâ€Metal Dichalcogenides and Titanium Dioxide for Photocatalytic Applications. Chemistry - A European Journal, 2018, 24, .	1.7	0
258	Metallic impurities in black phosphorus nanoflakes prepared by different synthetic routes. Nanoscale, 2018, 10, 1540-1546.	2.8	29
259	MoS ₂ Nanoparticles as Electrocatalytic Labels in Magneto-Immunoassays. ACS Applied Materials & Diterfaces, 2018, 10, 16861-16866.	4.0	11
260	Layered PtTe ₂ Matches Electrocatalytic Performance of Pt/C for Oxygen Reduction Reaction with Significantly Lower Toxicity. ACS Sustainable Chemistry and Engineering, 2018, 6, 7432-7441.	3.2	56
261	Additive manufacturing of electrochemical interfaces: Simultaneous detection of biomarkers. Applied Materials Today, 2018, 12, 43-50.	2.3	36
262	Selfâ€Contained Polymer/Metal 3D Printed Electrochemical Platform for Tailored Water Splitting. Advanced Functional Materials, 2018, 28, 1700655.	7.8	98
263	Chemistry of Graphene Derivatives: Synthesis, Applications, and Perspectives. Chemistry - A European Journal, 2018, 24, 5992-6006.	1.7	99
264	Cytotoxicity of Group 5 Transition Metal Ditellurides (MTe ₂ ; M=V, Nb, Ta). Chemistry - A European Journal, 2018, 24, 206-211.	1.7	32
265	Bjerknes Forces in Motion: Longâ€Range Translational Motion and Chiral Directionality Switching in Bubbleâ€Propelled Micromotors via an Ultrasonic Pathway. Advanced Functional Materials, 2018, 28, 1702618.	7.8	41
266	Nanohybrids of Twoâ€Dimensional Transitionâ€Metal Dichalcogenides and Titanium Dioxide for Photocatalytic Applications. Chemistry - A European Journal, 2018, 24, 18-31.	1.7	53
267	TaS ₃ Nanofibers: Layered Trichalcogenide for High-Performance Electronic and Sensing Devices. ACS Nano, 2018, 12, 464-473.	7.3	30
268	Oneâ€Step Synthesis of B/N Coâ€doped Graphene as Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: Synergistic Effect of Impurities. Chemistry - A European Journal, 2018, 24, 928-936.	1.7	26
269	WSe ₂ nanoparticles with enhanced hydrogen evolution reaction prepared by bipolar electrochemistry: application in competitive magneto-immunoassay. Nanoscale, 2018, 10, 23149-23156.	2.8	24
270	3D Printed Graphene Electrodes' Electrochemical Activation. ACS Applied Materials & Diterfaces, 2018, 10, 40294-40301.	4.0	188

#	Article	IF	Citations
271	Cytotoxicity of layered metal phosphorus chalcogenides (MPXY) nanoflakes; FePS3, CoPS3, NiPS3. FlatChem, 2018, 12, 1-9.	2.8	24
272	Electrochemical Exfoliation of MoS ₂ Crystal for Hydrogen Electrogeneration. Chemistry - A European Journal, 2018, 24, 18551-18555.	1.7	42
273	Multimaterial 3D-Printed Water Electrolyzer with Earth-Abundant Electrodeposited Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 16968-16975.	3.2	61
274	Fluorographenes for Energy and Sensing Application: The Amount of Fluorine Matters. ACS Omega, 2018, 3, 17700-17706.	1.6	6
275	Metal-Free Visible-Light Photoactivated C ₃ N ₄ Bubble-Propelled Tubular Micromotors with Inherent Fluorescence and On/Off Capabilities. ACS Nano, 2018, 12, 12482-12491.	7.3	85
276	ZnO/ZnO ₂ /Pt Janus Micromotors Propulsion Mode Changes with Size and Interface Structure: Enhanced Nitroaromatic Explosives Degradation under Visible Light. ACS Applied Materials & Light (2018), 10, 42688-42697.	4.0	70
277	Characteristics and performance of two-dimensional materials for electrocatalysis. Nature Catalysis, 2018, 1, 909-921.	16.1	591
278	1T-Phase Tungsten Chalcogenides (WS ₂ , WSe ₂ , WTe ₂) Decorated with TiO ₂ Nanoplatelets with Enhanced Electron Transfer Activity for Biosensing Applications. ACS Applied Nano Materials, 2018, 1, 7006-7015.	2.4	32
279	Nanoclay Nanomotors: Nanorobots Constructed from Nanoclay: Using Nature to Create Self-Propelled Autonomous Nanomachines (Adv. Funct. Mater. 40/2018). Advanced Functional Materials, 2018, 28, 1870291.	7.8	1
280	Cytotoxicity of phosphorus allotropes (black, violet, red). Applied Materials Today, 2018, 13, 310-319.	2.3	23
281	Molybdenum Sulfide Electrocatalysis is Dramatically Influenced by Solvents Used for Its Dispersions. ACS Omega, 2018, 3, 14371-14379.	1.6	4
282	Drug Delivery: Cooperative Multifunctional Self-Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery (Adv. Funct. Mater. 43/2018). Advanced Functional Materials, 2018, 28, 1870311.	7.8	6
283	Graphene Oxide: Carbocatalyst or Reagent?. Angewandte Chemie - International Edition, 2018, 57, 16713-16715.	7.2	26
284	Graphene Oxide: Carbocatalyst or Reagent?. Angewandte Chemie, 2018, 130, 16955-16957.	1.6	7
285	Multifunctional and self-propelled spherical Janus nano/micromotors: recent advances. Nanoscale, 2018, 10, 16398-16415.	2.8	73
286	Cooperative Multifunctional Selfâ€Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery. Advanced Functional Materials, 2018, 28, 1804343.	7.8	81
287	Covalent Functionalization of Exfoliated Arsenic with Chlorocarbene. Angewandte Chemie, 2018, 130, 15053-15056.	1.6	4
288	Black Phosphorous: Fluorination of Black Phosphorus-Will Black Phosphorus Burn Down in the Elemental Fluorine? (Adv. Funct. Mater. 35/2018). Advanced Functional Materials, 2018, 28, 1870247.	7.8	0

#	Article	IF	CITATIONS
289	2D-Pnictogens: alloy-based anode battery materials with ultrahigh cycling stability. Chemical Society Reviews, 2018, 47, 6964-6989.	18.7	100
290	Covalent Functionalization of Exfoliated Arsenic with Chlorocarbene. Angewandte Chemie - International Edition, 2018, 57, 14837-14840.	7.2	23
291	Triazine- and Heptazine-Based Carbon Nitrides: Toxicity. ACS Applied Nano Materials, 2018, 1, 4442-4449.	2.4	41
292	Monoelemental 2D materials-based field effect transistors for sensing and biosensing: Phosphorene, antimonene, arsenene, silicene, and germanene go beyond graphene. TrAC - Trends in Analytical Chemistry, 2018, 105, 251-262.	5.8	67
293	A highly sensitive room temperature humidity sensor based on 2D-WS2 nanosheets. FlatChem, 2018, 9, 21-26.	2.8	30
294	MoSe ₂ Dispersed in Stabilizing Surfactant Media: Effect of the Surfactant Type and Concentration on Electron Transfer and Catalytic Properties. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17820-17826.	4.0	25
295	Micro- and nanorobots based sensing and biosensing. Current Opinion in Electrochemistry, 2018, 10, 174-182.	2.5	76
296	Nanorobots Constructed from Nanoclay: Using Nature to Create Selfâ€Propelled Autonomous Nanomachines. Advanced Functional Materials, 2018, 28, 1802762.	7.8	38
297	Structure–Function Dependence on Template-Based Micromotors. ACS Applied Energy Materials, 2018, 1, 3443-3448.	2.5	8
298	Fluorination of Black Phosphorusâ€"Will Black Phosphorus Burn Down in the Elemental Fluorine?. Advanced Functional Materials, 2018, 28, 1801438.	7.8	34
299	Synthesis and properties of phosphorus and sulfur co-doped graphene. New Journal of Chemistry, 2018, 42, 16093-16102.	1.4	6
300	Nanoparticles Based on Poly(trimethylene carbonate) Triblock Copolymers with Post-Crystallization Ability and Their Degradation in vitro. Macromolecular Research, 2018, 26, 1026-1034.	1.0	4
301	Products of Degradation of Black Phosphorus in Protic Solvents. ACS Nano, 2018, 12, 8390-8396.	7.3	70
302	Layered franckeite and teallite intrinsic heterostructures: shear exfoliation and electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 16590-16599.	5.2	18
303	Fluorographene and Graphane as an Excellent Platform for Enzyme Biocatalysis. Chemistry - A European Journal, 2018, 24, 16833-16839.	1.7	8
304	Exfoliation of layered materials using electrochemistry. Chemical Society Reviews, 2018, 47, 7213-7224.	18.7	140
305	Graphene: Morphology-Dependent Magnetism in Nanographene: Beyond Nanoribbons (Adv. Funct.) Tj ETQq $1\ 1$	0.784314 7.8	rgBT /Overlo
306	Functional Protection of Exfoliated Black Phosphorus by Noncovalent Modification with Anthraquinone. ACS Nano, 2018, 12, 5666-5673.	7.3	79

#	Article	IF	Citations
307	Layered transition metal dichalcogenide electrochemistry: journey across the periodic table. Chemical Society Reviews, 2018, 47, 5602-5613.	18.7	117
308	Electrochemistry of layered metal diborides. Nanoscale, 2018, 10, 11544-11552.	2.8	40
309	Fuel-Free Light-Powered TiO ₂ /Pt Janus Micromotors for Enhanced Nitroaromatic Explosives Degradation. ACS Applied Materials & Interfaces, 2018, 10, 22427-22434.	4.0	108
310	Micro―and Nanomachines on the Move. Advanced Functional Materials, 2018, 28, 1801745.	7.8	6
311	Schwarzer Phosphor neu entdeckt: vom Volumenmaterial zu Monoschichten. Angewandte Chemie, 2017, 129, 8164-8185.	1.6	59
312	Black Phosphorus Rediscovered: From Bulk Material to Monolayers. Angewandte Chemie - International Edition, 2017, 56, 8052-8072.	7.2	407
313	Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene. Journal of the American Chemical Society, 2017, 139, 3171-3180.	6.6	202
314	A study of the effect of sonication time on the catalytic performance of layered WS ₂ from various sources. Physical Chemistry Chemical Physics, 2017, 19, 2768-2777.	1.3	5
315	Emerging materials for the fabrication of micro/nanomotors. Nanoscale, 2017, 9, 2109-2116.	2.8	67
316	Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Materials Chemistry Frontiers, 2017, 1, 1130-1136.	3.2	82
317	Synthesis of Carboxylated-Graphenes by the Kolbe–Schmitt Process. ACS Nano, 2017, 11, 1789-1797.	7.3	45
318	Functional Nanosheet Synthons by Covalent Modification of Transition-Metal Dichalcogenides. Chemistry of Materials, 2017, 29, 2066-2073.	3.2	56
319	The effect of varying solvents for MoS ₂ treatment on its catalytic efficiencies for HER and ORR. Physical Chemistry Chemical Physics, 2017, 19, 6610-6619.	1.3	25
320	Investigation on the ability of heteroatom-doped graphene for biorecognition. Nanoscale, 2017, 9, 3530-3536.	2.8	8
321	Concentration of Nitric Acid Strongly Influences Chemical Composition of Graphite Oxide. Chemistry - A European Journal, 2017, 23, 6432-6440.	1.7	24
322	3R phase of MoS ₂ and WS ₂ outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications, 2017, 53, 3054-3057.	2.2	180
323	2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus. Advanced Materials, 2017, 29, 1605299.	11.1	601
324	Nano/Microrobots Meet Electrochemistry. Advanced Functional Materials, 2017, 27, 1604759.	7.8	67

#	Article	IF	CITATIONS
325	Nearâ€Stoichiometric Bulk Graphane from Halogenated Graphenes (X = Cl/Br/l) by the Birch Reduction for High Density Energy Storage. Advanced Functional Materials, 2017, 27, 1605797.	7.8	20
326	Group 6 Layered Transition-Metal Dichalcogenides in Lab-on-a-Chip Devices: 1T-Phase WS ₂ for Microfluidics Non-Enzymatic Detection of Hydrogen Peroxide. Analytical Chemistry, 2017, 89, 4978-4985.	3.2	34
327	Graphene Nanobubbles Produced by Water Splitting. Nano Letters, 2017, 17, 2833-2838.	4.5	43
328	2H→1T Phase Engineering of Layered Tantalum Disulfides in Electrocatalysis: Oxygen Reduction Reaction. Chemistry - A European Journal, 2017, 23, 8082-8091.	1.7	33
329	CO ₂ reduction: the quest for electrocatalytic materials. Journal of Materials Chemistry A, 2017, 5, 8230-8246.	5.2	214
330	Electrosynthesis of Bifunctional WS _{3â^'<i>x</i>} /Reduced Graphene Oxide Hybrid for Hydrogen Evolution Reaction and Oxygen Reduction Reaction Electrocatalysis. Chemistry - A European Journal, 2017, 23, 8510-8519.	1.7	20
331	The Covalent Functionalization of Layered Black Phosphorus by Nucleophilic Reagents. Angewandte Chemie - International Edition, 2017, 56, 9891-9896.	7.2	159
332	Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others. Chemical Society Reviews, 2017, 46, 4450-4463.	18.7	83
333	Universal Method for Largeâ€Scale Synthesis of Layered Transition Metal Dichalcogenides. Chemistry - A European Journal, 2017, 23, 10177-10186.	1.7	22
334	Phosphorene and black phosphorus for sensing and biosensing. TrAC - Trends in Analytical Chemistry, 2017, 93, 1-6.	5.8	89
335	Planar Polyolefin Nanostripes: Perhydrogenated Graphene. Chemistry - A European Journal, 2017, 23, 11961-11968.	1.7	4
336	Two-Dimensional 1T-Phase Transition Metal Dichalcogenides as Nanocarriers To Enhance and Stabilize Enzyme Activity for Electrochemical Pesticide Detection. ACS Nano, 2017, 11, 5774-5784.	7.3	109
337	Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties. Physical Chemistry Chemical Physics, 2017, 19, 15914-15923.	1.3	33
338	Two-dimensional transition metal dichalcogenide/conducting polymer composites: synthesis and applications. Nanoscale, 2017, 9, 8052-8065.	2.8	85
339	Selective Bromination of Graphene Oxide by the Hunsdiecker Reaction. Chemistry - A European Journal, 2017, 23, 10473-10479.	1.7	21
340	Thin, Highâ€Flux, Selfâ€Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures. Chemistry - A European Journal, 2017, 23, 11416-11422.	1.7	26
341	Graphene/Group 5 Transition Metal Dichalcogenide Composites for Electrochemical Applications. Chemistry - A European Journal, 2017, 23, 10430-10437.	1.7	10
342	Layered Metal Thiophosphite Materials: Magnetic, Electrochemical, and Electronic Properties. ACS Applied Materials & Diterfaces, 2017, 9, 12563-12573.	4.0	179

#	Article	IF	Citations
343	Coke-derived graphene quantum dots as fluorescence nanoquencher in DNA detection. Applied Materials Today, 2017, 7, 138-143.	2.3	51
344	The Origin of MoS ₂ Significantly Influences Its Performance for the Hydrogen Evolution Reaction due to Differences in Phase Purity. Chemistry - A European Journal, 2017, 23, 3169-3177.	1.7	20
345	1Tâ€Phase WS ₂ Proteinâ€Based Biosensor. Advanced Functional Materials, 2017, 27, 1604923.	7.8	43
346	Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals. Journal of Materials Chemistry A, 2017, 5, 2739-2748.	5.2	87
347	Ultrapure Molybdenum Disulfide Shows Enhanced Catalysis for Hydrogen Evolution over Impuritiesâ€Doped Counterpart. ChemCatChem, 2017, 9, 1168-1171.	1.8	16
348	Chemically Reduced Graphene Oxide for the Assessment of Food Quality: How the Electrochemical Platform Should Be Tailored to the Application. Chemistry - A European Journal, 2017, 23, 1930-1936.	1.7	7
349	DNA biosensing with 3D printing technology. Analyst, The, 2017, 142, 279-283.	1.7	82
350	Semi-conducting single-walled carbon nanotubes are detrimental when compared to metallic single-walled carbon nanotubes for electrochemical applications. Physical Chemistry Chemical Physics, 2017, 19, 27320-27325.	1.3	8
351	Fast Synthesis of Highly Oxidized Graphene Oxide. ChemistrySelect, 2017, 2, 9000-9006.	0.7	29
352	The Role of the Metal Element in Layered Metal Phosphorus Triselenides upon Their Electrochemical Sensing and Energy Applications. ACS Catalysis, 2017, 7, 8159-8170.	5.5	83
353	Detection of Amphipathic Viral Peptide on Screen-Printed Electrodes by Liposome Rupture Impact Voltammetry. Analytical Chemistry, 2017, 89, 11753-11757.	3.2	7
354	Black-phosphorus-enhanced bubble-propelled autonomous catalytic microjets. Applied Materials Today, 2017, 9, 289-291.	2.3	20
355	Synergetic Metals on Carbocatalyst Shungite. Chemistry - A European Journal, 2017, 23, 18232-18238.	1.7	12
356	Cancer Therapy: Black Phosphorus Nanoparticles Potentiate the Anticancer Effect of Oxaliplatin in Ovarian Cancer Cell Line (Adv. Funct. Mater. 36/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
357	Black Phosphorus Nanoflakes/Polyaniline Hybrid Material for High-Performance Pseudocapacitors. Journal of Physical Chemistry C, 2017, 121, 20532-20538.	1.5	85
358	Layered Noble Metal Dichalcogenides: Tailoring Electrochemical and Catalytic Properties. ACS Applied Materials & Samp; Interfaces, 2017, 9, 25587-25599.	4.0	51
359	Environmental impact and potential health risks of 2D nanomaterials. Environmental Science: Nano, 2017, 4, 1617-1633.	2.2	68
360	Bioinspired Spiky Micromotors Based on Sporopollenin Exine Capsules. Advanced Functional Materials, 2017, 27, 1702338.	7.8	92

#	Article	IF	Citations
361	Etched nanoholes in graphitic surfaces for enhanced electrochemistry of basal plane. Carbon, 2017, 123, 84-92.	5.4	13
362	Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders. Angewandte Chemie - International Edition, 2017, 56, 14417-14422.	7.2	216
363	Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders. Angewandte Chemie, 2017, 129, 14609-14614.	1.6	87
364	2H → 1T Phase Change in Direct Synthesis of WS ₂ Nanosheets via Solution-Based Electrochemical Exfoliation and Their Catalytic Properties. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26350-26356.	4.0	61
365	3Dâ€printed Metal Electrodes for Heavy Metals Detection by Anodic Stripping Voltammetry. Electroanalysis, 2017, 29, 2444-2453.	1.5	67
366	Black Phosphorus Nanoparticles Potentiate the Anticancer Effect of Oxaliplatin in Ovarian Cancer Cell Line. Advanced Functional Materials, 2017, 27, 1701955.	7.8	51
367	3D Printed Electrodes for Detection of Nitroaromatic Explosives and Nerve Agents. Analytical Chemistry, 2017, 89, 8995-9001.	3.2	73
368	Unconventionally Layered CoTe ₂ and NiTe ₂ as Electrocatalysts for Hydrogen Evolution. Chemistry - A European Journal, 2017, 23, 11719-11726.	1.7	76
369	3D-printed metal electrodes for electrochemical detection of phenols. Applied Materials Today, 2017, 9, 212-219.	2.3	59
370	Microwave irradiated N- and B,Cl-doped graphene: Oxidation method has strong influence on capacitive behavior. Applied Materials Today, 2017, 9, 204-211.	2.3	25
371	Introduction of sulfur to graphene oxide by Friedel-Crafts reaction. FlatChem, 2017, 6, 28-36.	2.8	7
372	1T-Phase Transition Metal Dichalcogenides (MoS ₂ , MoSe ₂ , WS ₂ ,) Tj ETQ Enzyme-Based Biosensor. ACS Applied Materials & Dichard Samp; Interfaces, 2017, 9, 40697-40706.	q0 0 0 rgB ⁻ 4.0	Γ/Overlock 1 138
373	Surface properties of MoS ₂ probed by inverse gas chromatography and their impact on electrocatalytic properties. Nanoscale, 2017, 9, 19236-19244.	2.8	19
374	Innentitelbild: Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders (Angew. Chem. 46/2017). Angewandte Chemie, 2017, 129, 14510-14510.	1.6	2
375	Focus on Electrochemistry in (Bio)â€Nanoanalysis, Electromigration, and Liquid Phase Separations. Electrophoresis, 2017, 38, 2685-2686.	1.3	0
376	Electrochemical Exfoliation of Layered Black Phosphorus into Phosphorene. Angewandte Chemie, 2017, 129, 10579-10581.	1.6	56
377	The Covalent Functionalization of Layered Black Phosphorus by Nucleophilic Reagents. Angewandte Chemie, 2017, 129, 10023-10028.	1.6	26
378	Electrochemical Exfoliation of Layered Black Phosphorus into Phosphorene. Angewandte Chemie - International Edition, 2017, 56, 10443-10445.	7.2	228

#	Article	IF	CITATIONS
379	Layered Transition-Metal Ditellurides in Electrocatalytic Applicationsâ€"Contrasting Properties. ACS Catalysis, 2017, 7, 5706-5716.	5.5	50
380	Polyaniline/MoSX Supercapacitor by Electrodeposition. Bulletin of the Chemical Society of Japan, 2017, 90, 847-853.	2.0	46
381	Cytotoxicity of Exfoliated Layered Vanadium Dichalcogenides. Chemistry - A European Journal, 2017, 23, 684-690.	1.7	38
382	Boron and Nitrogen Doped Graphene <i>via</i> Microwave Exfoliation for Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine and Uric Acid. Electroanalysis, 2017, 29, 45-50.	1.5	16
383	Graphitic carbon nitride: Effects of various precursors on the structural, morphological and electrochemical sensing properties. Applied Materials Today, 2017, 8, 150-162.	2.3	56
384	Fluorographene Modified by Grignard Reagents: A Broad Range of Functional Nanomaterials. Chemistry - A European Journal, 2017, 23, 1956-1964.	1.7	30
385	Composition-Graded MoWS _{<i>x</i>} Hybrids with Tailored Catalytic Activity by Bipolar Electrochemistry. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41955-41964.	4.0	29
386	Electrochemistry of Layered Graphitic Carbon Nitride Synthesised from Various Precursors: Searching for Catalytic Effects. ChemPhysChem, 2016, 17, 481-488.	1.0	16
387	Selfâ€Propelled Supercapacitors for Onâ€Demand Circuit Configuration Based on WS ₂ Nanoparticles Micromachines. Advanced Functional Materials, 2016, 26, 6662-6667.	7.8	70
388	WS2Nanoparticles: Bipolar Electrochemical Synthesis of WS2Nanoparticles and Their Application in Magneto-Immunosandwich Assay (Adv. Funct. Mater. 23/2016). Advanced Functional Materials, 2016, 26, 4231-4231.	7.8	0
389	Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electronâ€Transfer Properties. Angewandte Chemie, 2016, 128, 3443-3447.	1.6	27
390	Layered Platinum Dichalcogenides (PtS ₂ , PtSe ₂ , and PtTe ₂) Electrocatalysis: Monotonic Dependence on the Chalcogen Size. Advanced Functional Materials, 2016, 26, 4306-4318.	7.8	228
391	Fe ⁰ Nanomotors in Ton Quantities (10 ²⁰ Units) for Environmental Remediation. Chemistry - A European Journal, 2016, 22, 4789-4793.	1.7	71
392	Impact Electrochemistry: Detection of Graphene Nanosheets Labeled with Metal Nanoparticles through Oxygen Reduction Mediation. ChemPhysChem, 2016, 17, 2096-2099.	1.0	18
393	Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electronâ€∓ransfer Properties. Angewandte Chemie - International Edition, 2016, 55, 3382-3386.	7.2	139
394	Self-Propelled Micromotors Monitored by Particle-Electrode Impact Voltammetry. ACS Sensors, 2016, 1, 949-957.	4.0	36
395	Contrasts between Mild and Harsh Oxidation of Carbon Nanotubes in terms of their Properties and Electrochemical Performance. ChemElectroChem, 2016, 3, 1713-1719.	1.7	11
396	Toward graphene chloride: chlorination of graphene and graphene oxide. RSC Advances, 2016, 6, 66884-66892.	1.7	56

#	Article	IF	Citations
397	Helical 3Dâ€Printed Metal Electrodes as Customâ€6haped 3D Platform for Electrochemical Devices. Advanced Functional Materials, 2016, 26, 698-703.	7.8	168
398	Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism. Advanced Materials, 2016, 28, 5045-5053.	11.1	94
399	Exfoliation of Layered Topological Insulators Bi ₂ Se ₃ and Bi ₂ Te ₃ <i>via</i> Electrochemistry. ACS Nano, 2016, 10, 11442-11448.	7.3	97
400	Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure. Scientific Reports, 2016, 6, 33046.	1.6	25
401	Ferromagnetism: Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism (Adv. Mater. 25/2016). Advanced Materials, 2016, 28, 5139-5139.	11.1	5
402	Electrochemically Exfoliated Graphene and Graphene Oxide for Energy Storage and Electrochemistry Applications. Chemistry - A European Journal, 2016, 22, 153-159.	1.7	235
403	3D-printing technologies for electrochemical applications. Chemical Society Reviews, 2016, 45, 2740-2755.	18.7	775
404	Rücktitelbild: Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electronâ€Transfer Properties (Angew. Chem. 10/2016). Angewandte Chemie, 2016, 128, 3576-3576.	1.6	4
405	Templated Electrochemical Fabrication of Hollow Molybdenum Sulfide Microstructures and Nanostructures with Catalytic Properties for Hydrogen Production. ACS Catalysis, 2016, 6, 3985-3993.	5.5	80
406	Graphene and its electrochemistry – an update. Chemical Society Reviews, 2016, 45, 2458-2493.	18.7	366
407	Influence of pH on the Motion of Catalytic Janus Particles and Tubular Bubbleâ€Propelled Micromotors. Chemistry - A European Journal, 2016, 22, 355-360.	1.7	28
408	Improving the Analytical Performance of Graphene Oxide towards the Assessment of Polyphenols. Chemistry - A European Journal, 2016, 22, 3830-3834.	1.7	25
409	From Nanomotors to Micromotors: The Influence of the Size of an Autonomous Bubble-Propelled Device upon Its Motion. ACS Nano, 2016, 10, 5041-5050.	7.3	97
410	Graphane Nanostripes. Angewandte Chemie, 2016, 128, 14171-14175.	1.6	7
411	Graphane Nanostripes. Angewandte Chemie - International Edition, 2016, 55, 13965-13969.	7.2	10
412	Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX ₂ , M =) Tj ETQq0 (0 0 <u>1 9</u> BT /C	verlock 10 Tf 218
413	Electrochemical catalysis at low dimensional carbons: Graphene, carbon nanotubes and beyond – A review. Applied Materials Today, 2016, 5, 134-141.	2.3	79
414	Layered SnS versus SnS < sub > 2 < /sub > : Valence and Structural Implications on Electrochemistry and Clean Energy Electrocatalysis. Journal of Physical Chemistry C, 2016, 120, 24098-24111.	1.5	85

#	Article	IF	CITATIONS
415	Self-propelled autonomous nanomotors meet microfluidics. Nanoscale, 2016, 8, 17415-17421.	2.8	48
416	Graphene Oxide Sorption Capacity toward Elements over the Whole Periodic Table: A Comparative Study. Journal of Physical Chemistry C, 2016, 120, 24203-24212.	1.5	56
417	Reducing emission of carcinogenic by-products in the production of thermally reduced graphene oxide. Green Chemistry, 2016, 18, 6618-6629.	4.6	11
418	Catalytic DNA-Functionalized Self-Propelled Micromachines for Environmental Remediation. CheM, 2016, 1, 473-481.	5.8	68
419	Impact electrochemistry on screen-printed electrodes for the detection of monodispersed silver nanoparticles of sizes 10–107 nm. Physical Chemistry Chemical Physics, 2016, 18, 28183-28188.	1.3	24
420	Black Phosphorus Nanoparticle Labels for Immunoassays via Hydrogen Evolution Reaction Mediation. Analytical Chemistry, 2016, 88, 10074-10079.	3.2	142
421	Negative Electrocatalytic Effects of p-Doping Niobium and Tantalum on MoS ₂ and WS ₂ for the Hydrogen Evolution Reaction and Oxygen Reduction Reaction. ACS Catalysis, 2016, 6, 5724-5734.	5.5	174
422	Functionalization of Hydrogenated Graphene: Transitionâ€Metalâ€Catalyzed Crossâ€Coupling Reactions of Allylic Câ^'H Bonds. Angewandte Chemie, 2016, 128, 10909-10912.	1.6	12
423	Functionalization of Hydrogenated Graphene: Transitionâ€Metalâ€Catalyzed Crossâ€Coupling Reactions of Allylic Câ°'H Bonds. Angewandte Chemie - International Edition, 2016, 55, 10751-10754.	7.2	22
424	Motion Control of Microâ€/Nanomotors. Chemistry - A European Journal, 2016, 22, 14796-14804.	1.7	67
425	MoS ₂ /WS ₂ â€Graphene Composites through Thermal Decomposition of Tetrathiomolybdate/Tetrathiotungstate for Proton/Oxygen Electroreduction. ChemPhysChem, 2016, 17, 2890-2896.	1.0	12
426	Topâ€Down and Bottomâ€Up Approaches in Engineering 1 T Phase Molybdenum Disulfide (MoS ₂): Towards Highly Catalytically Active Materials. Chemistry - A European Journal, 2016, 22, 14336-14341.	1.7	45
427	MoSe ₂ Nanolabels for Electrochemical Immunoassays. Analytical Chemistry, 2016, 88, 12204-12209.	3.2	33
428	Phosphorus and Halogen Coâ€Doped Graphene Materials and their Electrochemistry. Chemistry - A European Journal, 2016, 22, 15444-15450.	1.7	22
429	Valence and oxide impurities in MoS ₂ and WS ₂ dramatically change their electrocatalytic activity towards proton reduction. Nanoscale, 2016, 8, 16752-16760.	2.8	42
430	Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate(VI) Compounds: Myth or Reality?. Angewandte Chemie, 2016, 128, 12144-12148.	1.6	23
431	Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate(VI) Compounds: Myth or Reality?. Angewandte Chemie - International Edition, 2016, 55, 11965-11969.	7.2	25
432	Innenrýcktitelbild: Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate(VI) Compounds: Myth or Reality? (Angew. Chem. 39/2016). Angewandte Chemie, 2016, 128, 12289-12289.	1.6	0

#	Article	IF	CITATIONS
433	Graphene Oxide Stimulates Cells to Ruffle and Shed Plasma Membranes. CheM, 2016, 1, 189-190.	5.8	3
434	Layered Postâ€Transitionâ€Metal Dichalcogenides (Xâ^'Mâ^'Mâ^'X) and Their Properties. Chemistry - A European Journal, 2016, 22, 18810-18816.	1.7	29
435	Microwave Exfoliation of Graphite Oxides in H ₂ S Plasma for the Synthesis of Sulfur-Doped Graphenes as Oxygen Reduction Catalysts. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31849-31855.	4.0	39
436	Catalytic properties of group 4 transition metal dichalcogenides (MX ₂ ; M = Ti, Zr, Hf; X =) Tj ETQq0 ()	verlock 10
437	Doped and undoped graphene platforms: the influence of structural properties on the detection of polyphenols. Scientific Reports, 2016, 6, 20673.	1.6	12
438	Nitroaromatic explosives detection using electrochemically exfoliated graphene. Scientific Reports, 2016, 6, 33276.	1.6	59
439	Phenols as probes of chemical composition of graphene oxide. Physical Chemistry Chemical Physics, 2016, 18, 30515-30519.	1.3	7
440	A New Member of the Graphene Family: Graphene Acid. Chemistry - A European Journal, 2016, 22, 17416-17424.	1.7	44
441	Detecting the complex motion of self-propelled micromotors in microchannels by electrochemistry. RSC Advances, 2016, 6, 99977-99982.	1.7	18
442	Titelbild: Graphane Nanostripes (Angew. Chem. 45/2016). Angewandte Chemie, 2016, 128, 14105-14105.	1.6	0
443	Lithium Exfoliated Vanadium Dichalcogenides (VS ₂ , VSe ₂ , VTe ₂) Exhibit Dramatically Different Properties from Their Bulk Counterparts. Advanced Materials Interfaces, 2016, 3, 1600433.	1.9	89
444	Simple Synthesis of Fluorinated Graphene: Thermal Exfoliation of Fluorographite. Chemistry - A European Journal, 2016, 22, 17696-17703.	1.7	26
445	3D Printing: Helical 3D-Printed Metal Electrodes as Custom-Shaped 3D Platform for Electrochemical Devices (Adv. Funct. Mater. 5/2016). Advanced Functional Materials, 2016, 26, 803-803.	7.8	2
446	Nanostructured MoS ₂ Nanorose/Graphene Nanoplatelet Hybrids for Electrocatalysis. Chemistry - A European Journal, 2016, 22, 5969-5975.	1.7	14
447	Bipolar Electrochemical Synthesis of WS ₂ Nanoparticles and Their Application in Magnetoâ€Immunosandwich Assay. Advanced Functional Materials, 2016, 26, 4094-4098.	7.8	43
448	Graphene–Amorphous Transitionâ€Metal Chalcogenide (MoS _{<i>×</i>} ,) Tj ETQq0 0 0 rgBT /Overloc Evolution Reaction. ChemElectroChem, 2016, 3, 565-571.	ck 10 Tf 50 1.7	147 Td (W 41
449	Ball-milled sulfur-doped graphene materials contain metallic impurities originating from ball-milling apparatus: their influence on the catalytic properties. Physical Chemistry Chemical Physics, 2016, 18, 17875-17880.	1.3	42
450	Strong dependence of fluorescence quenching on the transition metal in layered transition metal dichalcogenide nanoflakes for nucleic acid detection. Analyst, The, 2016, 141, 4654-4658.	1.7	25

#	Article	IF	Citations
451	Aromatic-Exfoliated Transition Metal Dichalcogenides: Implications for Inherent Electrochemistry and Hydrogen Evolution. ACS Catalysis, 2016, 6, 4594-4607.	5.5	80
452	Carboxylic Carbon Quantum Dots as a Fluorescent Sensing Platform for DNA Detection. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1951-1957.	4.0	261
453	Fine tuning of graphene properties by modification with aryl halogens. Nanoscale, 2016, 8, 1493-1502.	2.8	21
454	Layered rhenium sulfide on free-standing three-dimensional electrodes is highly catalytic for the hydrogen evolution reaction: Experimental and theoretical study. Electrochemistry Communications, 2016, 63, 39-43.	2.3	54
455	Anti-MoS ₂ Nanostructures: Tl ₂ S and Its Electrochemical and Electronic Properties. ACS Nano, 2016, 10, 112-123.	7.3	18
456	Facile labelling of graphene oxide for superior capacitive energy storage and fluorescence applications. Physical Chemistry Chemical Physics, 2016, 18, 9673-9681.	1.3	20
457	Electrochemical Delamination and Chemical Etching of Chemical Vapor Deposition Graphene: Contrasting Properties. Journal of Physical Chemistry C, 2016, 120, 4682-4690.	1.5	17
458	Bottom-up Electrosynthesis of Highly Active Tungsten Sulfide (WS _{3–<i>x</i>}) Films for Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3948-3957.	4.0	67
459	Nanosized graphane (C ₁ H _{1.14}) _n by hydrogenation of carbon nanofibers by Birch reduction method. RSC Advances, 2016, 6, 6475-6485.	1.7	30
460	Photochromic Spatiotemporal Control of Bubble-Propelled Micromotors by a Spiropyran Molecular Switch. ACS Nano, 2016, 10, 3543-3552.	7.3	73
461	Beyond platinum: silver-catalyst based bubble-propelled tubular micromotors. Chemical Communications, 2016, 52, 4333-4336.	2.2	65
462	Covalent functionalization of MoS2. Materials Today, 2016, 19, 140-145.	8.3	190
463	Multifunctional electrocatalytic hybrid carbon nanocables with highly active edges on their walls. Nanoscale, 2016, 8, 6700-6711.	2.8	10
464	Few-layer black phosphorus nanoparticles. Chemical Communications, 2016, 52, 1563-1566.	2.2	120
465	Electrochemistry of layered GaSe and GeS: applications to ORR, OER and HER. Physical Chemistry Chemical Physics, 2016, 18, 1699-1711.	1.3	77
466	Remarkable electrochemical properties of electrochemically reduced graphene oxide towards oxygen reduction reaction are caused by residual metal-based impurities. Electrochemistry Communications, 2016, 62, 17-20.	2.3	30
467	The reduction of graphene oxide with hydrazine: elucidating its reductive capability based on a reaction-model approach. Chemical Communications, 2016, 52, 72-75.	2.2	117
468	Origin of exotic ferromagnetic behavior in exfoliated layered transition metal dichalcogenides MoS ₂ and WS ₂ . Nanoscale, 2016, 8, 1960-1967.	2.8	56

#	Article	IF	Citations
469	Layered Black Phosphorus as a Selective Vapor Sensor. Angewandte Chemie - International Edition, 2015, 54, 14317-14320.	7.2	187
470	Electrochemistry in (Bio)â€Nanoanalysis, Electromigration and Liquid Phase Separations. Electrophoresis, 2015, 36, 1809-1810.	1.3	0
471	Voltammetry of Layered Black Phosphorus: Electrochemistry of Multilayer Phosphorene. ChemElectroChem, 2015, 2, 295-295.	1.7	0
472	Selective Nitrogen Functionalization of Graphene by Bucherer-Type Reaction. Chemistry - A European Journal, 2015, 21, 7969-7969.	1.7	1
473	Graphene Oxide: Light and Atmosphere Affect the Quasi-equilibrium States of Graphite Oxide and Graphene Oxide Powders (Small 11/2015). Small, 2015, 11, 1265-1265.	5.2	2
474	Metallic 1Tâ€WS ₂ for Selective Impedimetric Vapor Sensing. Advanced Functional Materials, 2015, 25, 5611-5616.	7.8	122
475	Assessments of Surface Coverage after Nanomaterials are Drop Cast onto Electrodes for Electroanalytical Applications. ChemElectroChem, 2015, 2, 1003-1009.	1.7	22
476	Selective Nitrogen Functionalization of Graphene by Buchererâ€Type Reaction. Chemistry - A European Journal, 2015, 21, 8090-8095.	1.7	19
477	Twoâ€Dimensional Transition Metal Dichalcogenides in Biosystems. Advanced Functional Materials, 2015, 25, 5086-5099.	7.8	306
478	Soâ€Called "Metalâ€Free―Oxygen Reduction at Graphene Nanoribbons is in fact Metal Driven. ChemCatChem, 2015, 7, 1650-1654.	1.8	22
479	The Cytotoxicity of Layered Black Phosphorus. Chemistry - A European Journal, 2015, 21, 13991-13995.	1.7	173
480	Mesomeric Effects of Graphene Modified with Diazonium Salts: Substituent Type and Position Influence its Properties. Chemistry - A European Journal, 2015, 21, 17728-17738.	1.7	26
481	Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table. ChemPhysChem, 2015, 16, 3527-3531.	1.0	47
482	Evaluation of the Sorbent Properties of Single―and Multiwalled Carbon Nanotubes for Volatile Organic Compounds through Thermal Desorption–Gas Chromatography/Mass Spectrometry. ChemPlusChem, 2015, 80, 1279-1287.	1.3	14
483	Fluorinated Nanocarbons Cytotoxicity. Chemistry - A European Journal, 2015, 21, 13020-13026.	1.7	10
484	Pristine Basal―and Edgeâ€Planeâ€Oriented Molybdenite MoS ₂ Exhibiting Highly Anisotropic Properties. Chemistry - A European Journal, 2015, 21, 7170-7178.	1.7	133
485	Simultaneous Anodic and Cathodic Voltammetric Detection of Patulin and Ochratoxin A on Wellâ€Defined Carbon Electrodes. Electroanalysis, 2015, 27, 924-928.	1.5	10
486	Ternary Transition Metal Oxide Nanoparticles with Spinel Structure for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 982-987.	1.7	46

#	Article	IF	Citations
487	Effect of Electrolyte pH on the Inherent Electrochemistry of Layered Transitionâ€Metal Dichalcogenides (MoS ₂ , MoSe ₂ , WS ₂ , WSe ₂). ChemElectroChem, 2015, 2, 1713-1718.	1.7	13
488	Chemically Modified Graphene: The Influence of Structural Properties on the Assessment of Antioxidant Capacity. Chemistry - A European Journal, 2015, 21, 11793-11798.	1.7	13
489	Electrochemical Fluorographane: Hybrid Electrocatalysis of Biomarkers, Hydrogen Evolution, and Oxygen Reduction. Chemistry - A European Journal, 2015, 21, 16474-16478.	1.7	14
490	Hydrogenated Graphenes by Birch Reduction: Influence of Electron and Proton Sources on Hydrogenation Efficiency, Magnetism, and Electrochemistry. Chemistry - A European Journal, 2015, 21, 16828-16838.	1.7	26
491	Electrochemistry of Cd ₃ As ₂ â€"A 3D Analogue of Graphene. ChemNanoMat, 2015, 1, 359-363.	1.5	2
492	Transitional Metal/Chalcogen Dependant Interactions of Hairpin DNA with Transition Metal Dichalcogenides, MX ₂ . ChemPhysChem, 2015, 16, 2304-2306.	1.0	14
493	Definitive Insight into the Graphite Oxide Reduction Mechanism by Deuterium Labeling. ChemPlusChem, 2015, 80, 1399-1407.	1.3	19
494	Frontispiece: Hydrogenated Graphenes by Birch Reduction: Influence of Electron and Proton Sources on Hydrogenation Efficiency, Magnetism, and Electrochemistry. Chemistry - A European Journal, 2015, 21, .	1.7	0
495	Definitive proof of graphene hydrogenation by Clemmensen reduction: use of deuterium labeling. Nanoscale, 2015, 7, 10535-10543.	2.8	15
496	Simultaneous self-exfoliation and autonomous motion of MoS ₂ particles in water. Chemical Communications, 2015, 51, 9899-9902.	2.2	13
497	Enhancement of electrochemical and catalytic properties of MoS2 through ball-milling. Electrochemistry Communications, 2015, 54, 36-40.	2.3	51
498	Fluorographene: Dichlorocarbene-Functionalized Fluorographene: Synthesis and Reaction Mechanism (Small 31/2015). Small, 2015, 11, 3789-3789.	5.2	2
499	Impact electrochemistry: colloidal metal sulfide detection by cathodic particle coulometry. Physical Chemistry Chemical Physics, 2015, 17, 26997-27000.	1.3	9
500	Cytotoxicity of fluorographene. RSC Advances, 2015, 5, 107158-107165.	1.7	18
501	Molybdenum Disulfide: Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS2 (Small 5/2015). Small, 2015, 11, 604-604.	5.2	3
502	Graphene and carbon quantum dots electrochemistry. Electrochemistry Communications, 2015, 52, 75-79.	2.3	103
503	Misfit‣ayered Bi _{1.85} Sr ₂ Co _{1.85} O _{7.7â°'<i>δ</i>} for the Hydrogen Evolution Reaction: Beyond van der Waals Heterostructures. ChemPhysChem, 2015, 16, 769-774.	1.0	10
504	A limited anodic and cathodic potential window of MoS ₂ : limitations in electrochemical applications. Nanoscale, 2015, 7, 3126-3129.	2.8	35

#	Article	IF	Citations
505	Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale, 2015, 7, 5852-5858.	2.8	195
506	Thiofluorographene–Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Advanced Materials, 2015, 27, 2305-2310.	11.1	84
507	Synthesis of Strongly Fluorescent Graphene Quantum Dots by Cage-Opening Buckminsterfullerene. ACS Nano, 2015, 9, 2548-2555.	7.3	248
508	Susceptibility of FeS2 hydrogen evolution performance to sulfide poisoning. Electrochemistry Communications, 2015, 58, 29-32.	2.3	13
509	Impact Electrochemistry of Layered Transition Metal Dichalcogenides. ACS Nano, 2015, 9, 8474-8483.	7.3	53
510	Fabrication of Micro/Nanoscale Motors. Chemical Reviews, 2015, 115, 8704-8735.	23.0	603
511	Use of deuterium labellingâ€"evidence of graphene hydrogenation by reduction of graphite oxide using aluminium in sodium hydroxide. RSC Advances, 2015, 5, 18733-18739.	1.7	14
512	Intrinsic electrochemical performance and precise control of surface porosity of graphene-modified electrodes using the drop-casting technique. Electrochemistry Communications, 2015, 59, 86-90.	2.3	28
513	The gating effect by thousands of bubble-propelled micromotors in macroscale channels. Nanoscale, 2015, 7, 11575-11579.	2.8	4
514	Layered titanium diboride: towards exfoliation and electrochemical applications. Nanoscale, 2015, 7, 12527-12534.	2.8	36
515	Insight into the Mechanism of the Thermal Reduction of Graphite Oxide: Deuterium-Labeled Graphite Oxide Is the Key. ACS Nano, 2015, 9, 5478-5485.	7.3	46
516	Sulfur poisoning of emergent and current electrocatalysts: vulnerability of MoS ₂ , and direct correlation to Pt hydrogen evolution reaction kinetics. Nanoscale, 2015, 7, 8879-8883.	2.8	17
517	$MoxW1 a^*xS2Solid Solutions as 3D Electrodes for Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2015, 2, 1500041.$	1.9	49
518	Highly selective removal of Ga 3+ ions from Al 3+ /Ga 3+ mixtures using graphite oxide. Carbon, 2015, 89, 121-129.	5.4	36
519	Catalytic and Charge Transfer Properties of Transition Metal Dichalcogenides Arising from Electrochemical Pretreatment. ACS Nano, 2015, 9, 5164-5179.	7.3	184
520	The dopant type and amount governs the electrochemical performance of graphene platforms for the antioxidant activity quantification. Nanoscale, 2015, 7, 9040-9045.	2.8	19
521	Hydroboration of Graphene Oxide: Towards Stoichiometric Graphol and Hydroxygraphane. Chemistry - A European Journal, 2015, 21, 8130-8136.	1.7	12
522	Monothiolation and Reduction of Graphene Oxide <i>via</i> One-Pot Synthesis: Hybrid Catalyst for Oxygen Reduction. ACS Nano, 2015, 9, 4193-4199.	7.3	92

#	Article	IF	Citations
523	Fluorographane (C ₁ H _x F _{1â^'xâ^'Î'}) _n : synthesis and properties. Chemical Communications, 2015, 51, 5633-5636.	2.2	34
524	Impact electrochemistry of individual molybdenum nanoparticles. Electrochemistry Communications, 2015, 56, 16-19.	2.3	27
525	Layered transition metal oxyhydroxides as tri-functional electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 11920-11929.	5.2	80
526	Iridium―and Osmiumâ€decorated Reduced Graphenes as Promising Catalysts for Hydrogen Evolution. ChemPhysChem, 2015, 16, 1898-1905.	1.0	29
527	Dichlorocarbeneâ€Functionalized Fluorographene: Synthesis and Reaction Mechanism. Small, 2015, 11, 3790-3796.	5.2	32
528	2H → 1T phase transition and hydrogen evolution activity of MoS ₂ , MoSe ₂ , WS ₂ and WSe ₂ strongly depends on the MX ₂ composition. Chemical Communications, 2015, 51, 8450-8453.	2.2	565
529	High temperature superconducting materials as bi-functional catalysts for hydrogen evolution and oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 8346-8352.	5.2	25
530	Transition metal dichalcogenides (MoS2, MoSe2, WS2 and WSe2) exfoliation technique has strong influence upon their capacitance. Electrochemistry Communications, 2015, 56, 24-28.	2.3	129
531	Geographical and Geological Origin of Natural Graphite Heavily Influence the Electrical and Electrochemical Properties of Chemically Modified Graphenes. Chemistry - A European Journal, 2015, 21, 8435-8440.	1.7	13
532	Graphene: Thiofluorographene–Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties (Adv. Mater. 14/2015). Advanced Materials, 2015, 27, 2407-2407.	11.1	4
533	Nanoarchitectonics + future leaders = bright success in materials science and technology. Science and Technology of Advanced Materials, 2015, 16, 010302.	2.8	2
534	Mycotoxin Aptasensing Amplification by using Inherently Electroactive Grapheneâ€Oxide Nanoplatelet Labels. ChemElectroChem, 2015, 2, 743-747.	1.7	36
535	The Structural Stability of Graphene Anticorrosion Coating Materials is Compromised at Low Potentials. Chemistry - A European Journal, 2015, 21, 7896-7901.	1.7	33
536	Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. Chemical Reviews, 2015, 115, 11941-11966.	23.0	719
537	Toxicity of layered semiconductor chalcogenides: beware of interferences. RSC Advances, 2015, 5, 67485-67492.	1.7	31
538	Carbocatalysis: The State of "Metalâ€Free―Catalysis. Chemistry - A European Journal, 2015, 21, 12550-1256	521.7	104
539	Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling. Nanoscale, 2015, 7, 20256-20266.	2.8	76
540	Electrochemical properties of layered SnO and PbO for energy applications. RSC Advances, 2015, 5, 101949-101958.	1.7	11

#	Article	IF	CITATIONS
541	Chemical Energy Powered Nano/Micro/Macromotors and the Environment. Chemistry - A European Journal, 2015, 21, 58-72.	1.7	156
542	Voltammetry of Layered Black Phosphorus: Electrochemistry of Multilayer Phosphorene. ChemElectroChem, 2015, 2, 324-327.	1.7	97
543	Inherent Electrochemistry of Layered Postâ€Transition Metal Halides: The Unexpected Effect of Potential Cycling of Pbl ₂ . Chemistry - A European Journal, 2015, 21, 3073-3078.	1.7	10
544	Toxicity of graphene related materials and transition metal dichalcogenides. RSC Advances, 2015, 5, 3074-3080.	1.7	76
545	Labeling Graphene Oxygen Groups with Europium. ChemPhysChem, 2015, 16, 331-334.	1.0	3
546	Light and Atmosphere Affect the Quasiâ€equilibrium States of Graphite Oxide and Graphene Oxide Powders. Small, 2015, 11, 1266-1272.	5. 2	34
547	pâ€Elementâ€Doped Graphene: Heteroatoms for Electrochemical Enhancement. ChemElectroChem, 2015, 2, 190-199.	1.7	40
548	Exfoliated transition metal dichalcogenides (MoS2, MoSe2, WS2, WSe2): An electrochemical impedance spectroscopic investigation. Electrochemistry Communications, 2015, 50, 39-42.	2.3	62
549	Towards graphene iodide: iodination of graphite oxide. Nanoscale, 2015, 7, 261-270.	2.8	54
550	Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS ₂ . Small, 2015, 11, 605-612.	5. 2	250
551	Graphene Oxides Prepared by Hummers', Hofmann's, and Staudenmaier's Methods: Dramatic Influenc on Heavyâ€Metalâ€lon Adsorption. ChemPhysChem, 2014, 15, 2922-2929.	es 1.0	68
552	Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method. ACS Nano, 2014, 8, 12185-12198.	7.3	288
553	Remote Electrochemical Monitoring of an Autonomous Self-Propelled Capsule. Journal of Physical Chemistry C, 2014, 118, 29896-29902.	1.5	9
554	Simultaneous Direct Voltammetric Determination of Metalâ€Oxide Nanoparticles from Their Mixture (CuO/NiO). ChemElectroChem, 2014, 1, 249-253.	1.7	4
555	Graphene: Oxygen-Free Highly Conductive Graphene Papers (Adv. Funct. Mater. 31/2014). Advanced Functional Materials, 2014, 24, 4877-4877.	7.8	4
556	Mycotoxins: Simultaneous Detection of Zearalenone and Citrinin by Voltammetry on Edge Plane Pyrolytic Graphite Electrode. Electroanalysis, 2014, 26, 1901-1904.	1.5	25
557	Chemical Optimization for Simultaneous Voltammetric Detection of Molybdenum and Silver Nanoparticles in Aqueous Buffer Solutions. ChemElectroChem, 2014, 1, 2110-2115.	1.7	1
558	Redox reaction of p-aminophenol at carbon nanotube electrodes is accelerated by carbonaceous impurities. Electrochemistry Communications, 2014, 38, 1-3.	2.3	9

#	Article	IF	CITATIONS
559	Blood metabolite strongly suppresses motion of electrochemically deposited catalytic self-propelled microjet engines. Electrochemistry Communications, 2014, 38, 128-130.	2.3	10
560	Concurrent Phosphorus Doping and Reduction of Graphene Oxide. Chemistry - A European Journal, 2014, 20, 4284-4291.	1.7	46
561	Water-soluble highly fluorinated graphite oxide. RSC Advances, 2014, 4, 1378-1387.	1.7	69
562	Transition Metalâ€Depleted Graphenes for Electrochemical Applications via Reduction of CO ₂ by Lithium. Small, 2014, 10, 1529-1535.	5.2	30
563	Simultaneous Electrochemical Detection of Silver and Molybdenum Nanoparticles. ChemElectroChem, 2014, 1, 529-531.	1.7	5
564	Fluorographites (CF _{<i>x</i>}) _{<i>n</i>} Exhibit Improved Heterogeneous Electronâ€Transfer Rates with Increasing Level of Fluorination: Towards the Sensing of Biomolecules. Chemistry - A European Journal, 2014, 20, 6665-6671.	1.7	46
565	Layered transition metal dichalcogenides for electrochemical energy generation and storage. Journal of Materials Chemistry A, 2014, 2, 8981-8987.	5.2	552
566	Regeneration of a Conjugated sp ² Graphene System through Selective Defunctionalization of Epoxides by Using a Proven Synthetic Chemistry Mechanism. Chemistry - A European Journal, 2014, 20, 1871-1877.	1.7	25
567	Oxidation Debris in Graphene Oxide Is Responsible for Its Inherent Electroactivity. ACS Nano, 2014, 8, 4197-4204.	7.3	77
568	Oxygenâ€Free Highly Conductive Graphene Papers. Advanced Functional Materials, 2014, 24, 4878-4885.	7.8	42
569	Cytotoxicity of halogenated graphenes. Nanoscale, 2014, 6, 1173-1180.	2.8	36
570	Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews, 2014, 43, 291-312.	18.7	1,479
571	The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties. Nanoscale, 2014, 6, 472-476.	2.8	138
572	Detection of biomarkers with graphene nanoplatelets and nanoribbons. Analyst, The, 2014, 139, 1072.	1.7	41
573	Highly hydrogenated graphene via active hydrogen reduction of graphene oxide in the aqueous phase at room temperature. Nanoscale, 2014, 6, 2153-2160.	2.8	49
574	Molybdenum disulfide (MoS ₂) nanoflakes as inherently electroactive labels for DNA hybridization detection. Nanoscale, 2014, 6, 11971-11975.	2.8	98
575	Chemical Preparation of Graphene Materials Results in Extensive Unintentional Doping with Heteroatoms and Metals. Chemistry - A European Journal, 2014, 20, 15760-15767.	1.7	39
576	Carbon fragments are ripped off from graphite oxide sheets during their thermal reduction. New Journal of Chemistry, 2014, 38, 5700-5705.	1.4	37

#	Article	IF	Citations
577	Iridiumâ€Catalystâ€Based Autonomous Bubbleâ€Propelled Graphene Micromotors with Ultralow Catalyst Loading. Chemistry - A European Journal, 2014, 20, 14946-14950.	1.7	25
578	Precise Tuning of the Charge Transfer Kinetics and Catalytic Properties of MoS ₂ Materials via Electrochemical Methods. Chemistry - A European Journal, 2014, 20, 17426-17432.	1.7	73
579	Nitrogen doped graphene: influence of precursors and conditions of the synthesis. Journal of Materials Chemistry C, 2014, 2, 2887-2893.	2.7	61
580	Acetylene bubble-powered autonomous capsules: towards in situ fuel. Chemical Communications, 2014, 50, 15849-15851.	2.2	10
581	Haemoglobin electrochemical detection on various reduced graphene surfaces: well-defined glassy carbon electrode outperforms the graphenoids. RSC Advances, 2014, 4, 8050.	1.7	19
582	Fate of silver nanoparticles in natural waters; integrative use of conventional and electrochemical analytical techniques. RSC Advances, 2014, 4, 5006.	1.7	24
583	Electrochemical tuning of oxygen-containing groups on graphene oxides: towards control of the performance for the analysis of biomarkers. Physical Chemistry Chemical Physics, 2014, 16, 12178-12182.	1.3	16
584	Highly conductive graphene nanoribbons from the reduction of graphene oxide nanoribbons with lithium aluminium hydride. Journal of Materials Chemistry C, 2014, 2, 856-863.	2.7	34
585	Electron transfer properties of chemically reduced graphene materials with different oxygen contents. Journal of Materials Chemistry A, 2014, 2, 10668-10675.	5. 2	64
586	Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities. Physical Chemistry Chemical Physics, 2014, 16, 7058-7065.	1.3	14
587	CVD graphene based immunosensor. RSC Advances, 2014, 4, 23952-23956.	1.7	14
588	MoS ₂ exhibits stronger toxicity with increased exfoliation. Nanoscale, 2014, 6, 14412-14418.	2.8	162
589	Neutron diffraction as a precise and reliable method for obtaining structural properties of bulk quantities of graphene. Nanoscale, 2014, 6, 13082-13089.	2.8	38
590	Direct Voltammetric Determination of Redoxâ€Active Iron in Carbon Nanotubes. ChemPhysChem, 2014, 15, 3819-3823.	1.0	6
591	Clean room-free rapid fabrication of roll-up self-powered catalytic microengines. Journal of Materials Chemistry A, 2014, 2, 1219-1223.	5.2	22
592	Graphene in analytical science. Analytical and Bioanalytical Chemistry, 2014, 406, 6883-6884.	1.9	4
593	Graphene Oxides: Transformations in Natural Waters over a Period of Three Months. ChemPlusChem, 2014, 79, 844-849.	1.3	3
594	Impact Electrochemistry: Measuring Individual Nanoparticles. ACS Nano, 2014, 8, 7555-7558.	7.3	92

#	Article	IF	CITATIONS
595	Geometric asymmetry driven Janus micromotors. Nanoscale, 2014, 6, 11177-11180.	2.8	43
596	Towards Graphane Applications in Security: The Electrochemical Detection of Trinitrotoluene in Seawater on Hydrogenated Graphene. Electroanalysis, 2014, 26, 62-68.	1.5	32
597	Electrochemically reduced graphene nanoribbons: Interference from inherent electrochemistry of the material in DPV studies. Electrochemistry Communications, 2014, 46, 137-139.	2.3	8
598	Alternating Misfit Layered Transition/Alkaline Earth Metal Chalcogenide Ca ₃ Co ₄ O ₉ as a New Class of Chalcogenide Materials for Hydrogen Evolution. Chemistry of Materials, 2014, 26, 4130-4136.	3.2	68
599	Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. TrAC - Trends in Analytical Chemistry, 2014, 61, 49-53.	5.8	273
600	Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets. Nanoscale, 2014, 6, 10792-10797.	2.8	59
601	Highly selective uptake of Ba ²⁺ and Sr ²⁺ ions by graphene oxide from mixtures of IIA elements. RSC Advances, 2014, 4, 26673-26676.	1.7	21
602	Towards graphene bromide: bromination of graphite oxide. Nanoscale, 2014, 6, 6065-6074.	2.8	109
603	Tissue cell assisted fabrication of tubular catalytic platinum microengines. Nanoscale, 2014, 6, 11359-11363.	2.8	27
604	Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13774-13779.	3.3	133
605	Residual metallic impurities within carbon nanotubes play a dominant role in supposedly "metal-free― oxygen reduction reactions. Chemical Communications, 2014, 50, 12662-12664.	2.2	60
606	Guest Editorial: Electrochemistry of Graphene. Electroanalysis, 2014, 26, 4-4.	1.5	0
607	Uranium- and Thorium-Doped Graphene for Efficient Oxygen and Hydrogen Peroxide Reduction. ACS Nano, 2014, 8, 7106-7114.	7.3	73
608	Towards highly electrically conductive and thermally insulating graphene nanocomposites: Al ₂ O ₃ –graphene. RSC Advances, 2014, 4, 7418-7424.	1.7	50
609	Biomimetic Artificial Inorganic Enzymeâ€Free Selfâ€Propelled Microfish Robot for Selective Detection of Pb ²⁺ in Water. Chemistry - A European Journal, 2014, 20, 4292-4296.	1.7	99
610	Cytotoxicity Profile of Highly Hydrogenated Graphene. Chemistry - A European Journal, 2014, 20, 6366-6373.	1.7	35
611	Magnetic control of electrochemical processes at electrode surface using iron-rich graphene materials with dual functionality. Nanoscale, 2014, 6, 7391-7396.	2.8	13
612	Beyond Platinum: Bubble-Propelled Micromotors Based on Ag and MnO ₂ Catalysts. Journal of the American Chemical Society, 2014, 136, 2719-2722.	6.6	205

#	Article	lF	Citations
613	Heteroatom modified graphenes: electronic and electrochemical applications. Journal of Materials Chemistry C, 2014, 2, 6454-6461.	2.7	63
614	Crucial Role of Surfactants in Bubble-Propelled Microengines. Journal of Physical Chemistry C, 2014, 118, 5268-5274.	1.5	79
615	Cytotoxicity of Exfoliated Transitionâ€Metal Dichalcogenides (MoS ₂ , WS ₂ , and) Tj ETC 2014, 20, 9627-9632.	Qq1 1 0.78 1.7	34314 rgBT 358
616	Capacitance of p―and nâ€Doped Graphenes is Dominated by Structural Defects Regardless of the Dopant Type. ChemSusChem, 2014, 7, 1102-1106.	3.6	45
617	Fluorographenes via thermal exfoliation of graphite oxide in SF ₆ , SF ₄ and MoF ₆ atmospheres. Journal of Materials Chemistry C, 2014, 2, 5198-5207.	2.7	30
618	3D-graphene for electrocatalysis of oxygen reduction reaction: Increasing number of layers increases the catalytic effect. Electrochemistry Communications, 2014, 46, 148-151.	2.3	34
619	Permanganate-Route-Prepared Electrochemically Reduced Graphene Oxides Exhibit Limited Anodic Potential Window. Journal of Physical Chemistry C, 2014, 118, 23368-23375.	1.5	3
620	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-7188.	23.0	968
621	Rational Design of Carboxyl Groups Perpendicularly Attached to a Graphene Sheet: A Platform for Enhanced Biosensing Applications. Chemistry - A European Journal, 2014, 20, 217-222.	1.7	43
622	Direct voltammetry of colloidal graphene oxides. Electrochemistry Communications, 2014, 43, 87-90.	2.3	17
623	Towards biocompatible nano/microscale machines: self-propelled catalytic nanomotors not exhibiting acute toxicity. Nanoscale, 2014, 6, 2119-2124.	2.8	39
624	Marangoni self-propelled capsules in a maze: pollutants  sense and act' in complex channel environments. Lab on A Chip, 2014, 14, 2818-2823.	3.1	47
625	Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties. Physical Chemistry Chemical Physics, 2014, 16, 14231-14235.	1.3	86
626	Vacuum-assisted microwave reduction/exfoliation of graphite oxide and the influence of precursor graphite oxide. Carbon, 2014, 77, 508-517.	5.4	61
627	Frontispiece: Iridium-Catalyst-Based Autonomous Bubble-Propelled Graphene Micromotors with Ultralow Catalyst Loading. Chemistry - A European Journal, 2014, 20, n/a-n/a.	1.7	0
628	Direct In Vivo Electrochemical Detection of Haemoglobin in Red Blood Cells. Scientific Reports, 2014, 4, 6209.	1.6	44
629	Chemically Modified Graphenes as Detectors in Labâ€onâ€Chip Device. Electroanalysis, 2013, 25, 945-950.	1.5	27
630	Boron-doped graphene and boron-doped diamond electrodes: detection of biomarkers and resistance to fouling. Analyst, The, 2013, 138, 4885.	1.7	59

#	Article	IF	Citations
631	Influence of real-world environments on the motion of catalytic bubble-propelled micromotors. Lab on A Chip, 2013, 13, 2937.	3.1	40
632	Transition Metal (Mn, Fe, Co, Ni)â€Doped Graphene Hybrids for Electrocatalysis. Chemistry - an Asian Journal, 2013, 8, 1295-1300.	1.7	78
633	Surfactant Capsules Propel Interfacial Oil Droplets: An Environmental Cleanup Strategy. ChemPlusChem, 2013, 78, 395-397.	1.3	38
634	Poisoning of bubble propelled catalytic micromotors: the chemical environment matters. Nanoscale, 2013, 5, 2909.	2.8	86
635	Electrochemistry of graphene, graphene oxide and other graphenoids: Review. Electrochemistry Communications, 2013, 36, 14-18.	2.3	235
636	Potassium assisted reduction and doping of graphene oxides: towards faster electron transfer kinetics. RSC Advances, 2013, 3, 10900.	1.7	7
637	Prolonged exposure of graphite oxide to soft X-ray irradiation during XPS measurements leads to alterations of the chemical composition. Analyst, The, 2013, 138, 7012.	1.7	11
638	Inherently electroactive graphene oxide nanoplatelets as labels for specific protein-target recognition. Nanoscale, 2013, 5, 7844.	2.8	29
639	Boron-Doped Graphene: Scalable and Tunable p-Type Carrier Concentration Doping. Journal of Physical Chemistry C, 2013, 117, 23251-23257.	1.5	108
640	An insight into the hybridization mechanism of hairpin DNA physically immobilized on chemically modified graphenes. Analyst, The, 2013, 138, 467-471.	1.7	11
641	Graphene platforms for the detection of caffeine in real samples. Analytica Chimica Acta, 2013, 804, 92-97.	2.6	46
642	Highly Hydrogenated Graphene through Microwave Exfoliation of Graphite Oxide in Hydrogen Plasma: Towards Electrochemical Applications. Chemistry - A European Journal, 2013, 19, 15583-15592.	1.7	48
643	Detection of silver nanoparticles on a <scp>l</scp> abâ€onâ€chip platform. Electrophoresis, 2013, 34, 2007-2010.	1.3	16
644	Boron and nitrogen doping of graphene via thermal exfoliation of graphite oxide in a BF3 or NH3 atmosphere: contrasting properties. Journal of Materials Chemistry A, 2013, 1, 13146.	5.2	72
645	Unusual Inherent Electrochemistry of Graphene Oxides Prepared Using Permanganate Oxidants. Chemistry - A European Journal, 2013, 19, 12673-12683.	1.7	86
646	Carcinogenic Organic Residual Compounds Readsorbed on Thermally Reduced Graphene Materials are Released at Low Temperature. Chemistry - A European Journal, 2013, 19, 14446-14450.	1.7	6
647	Reynolds numbers influence the directionality of self-propelled microjet engines in the 10â ² regime. Nanoscale, 2013, 5, 7277.	2.8	22
648	Blood electrolytes exhibit a strong influence on the mobility of artificial catalytic microengines. Physical Chemistry Chemical Physics, 2013, 15, 17277.	1.3	24

#	Article	IF	CITATIONS
649	Metallic impurities availability in reduced graphene is greatly enhanced by its ultrasonication. Faraday Discussions, 2013, 164, 275.	1.6	7
650	Magnetotactic Artificial Self-Propelled Nanojets. Langmuir, 2013, 29, 7411-7415.	1.6	57
651	Electrocatalytic effect of ZnO nanoparticles on reduction of nitroaromatic compounds. Catalysis Science and Technology, 2013, 3, 123-127.	2.1	40
652	Carbonaceous impurities in carbon nanotubes are responsible for accelerated electrochemistry of acetaminophen. Electrochemistry Communications, 2013, 26, 71-73.	2.3	12
653	High-resolution impedance spectroscopy for graphene characterization. Electrochemistry Communications, 2013, 26, 52-54.	2.3	29
654	Reduction of graphene oxide with substituted borohydrides. Journal of Materials Chemistry A, 2013, 1, 1892-1898.	5.2	127
655	Soldering DNA to graphene via 0, 1 and 2-point contacts: Electrochemical impedance spectroscopic investigation. Electrochemistry Communications, 2013, 28, 83-86.	2.3	5
656	Selective Removal of Hydroxyl Groups from Graphene Oxide. Chemistry - A European Journal, 2013, 19, 2005-2011.	1.7	54
657	Electrochemistry at CVD Grown Multilayer Graphene Transferred onto Flexible Substrates. Journal of Physical Chemistry C, 2013, 117, 2053-2058.	1.5	51
658	Self-propelled nanojets via template electrodeposition. Nanoscale, 2013, 5, 1319-1324.	2.8	54
659	Covalent chemistry on graphene. Chemical Society Reviews, 2013, 42, 3222.	18.7	335
660	Biorecognition on Graphene: Physical, Covalent, and Affinity Immobilization Methods Exhibiting Dramatic Differences. Chemistry - an Asian Journal, 2013, 8, 198-203.	1.7	31
661	"Metalâ€Free―Catalytic Oxygen Reduction Reaction on Heteroatomâ€Doped Graphene is Caused by Trace Metal Impurities. Angewandte Chemie - International Edition, 2013, 52, 13818-13821.	7.2	331
662	Concentric bimetallic microjets by electrodeposition. RSC Advances, 2013, 3, 3963.	1.7	61
663	Biomarkers Detection on Hydrogenated Graphene Surfaces: Towards Applications of Graphane in Biosensing. Electroanalysis, 2013, 25, 703-705.	1.5	31
664	Thrombin aptasensing with inherently electroactive graphene oxide nanoplatelets as labels. Nanoscale, 2013, 5, 4758.	2.8	55
665	Unscrolling of multi-walled carbon nanotubes: towards micrometre-scale graphene oxide sheets. Physical Chemistry Chemical Physics, 2013, 15, 7755.	1.3	8
666	Artificial micro-cinderella based on self-propelled micromagnets for the active separation of paramagnetic particles. Chemical Communications, 2013, 49, 5147.	2.2	27

#	Article	IF	Citations
667	Large-scale quantification of CVD graphene surface coverage. Nanoscale, 2013, 5, 2379.	2.8	47
668	Carbonaceous Impurities in Carbon Nanotubes are Responsible for Accelerated Electrochemistry of Cytochrome c. Analytical Chemistry, 2013, 85, 6195-6197.	3.2	20
669	Graphane and hydrogenated graphene. Chemical Society Reviews, 2013, 42, 5987.	18.7	308
670	Purification of carbon nanotubes by high temperature chlorine gas treatment. Physical Chemistry Chemical Physics, 2013, 15, 5615.	1.3	31
671	Self-propelled nano and microsystems. Nanoscale, 2013, 5, 1258-1258.	2.8	2
672	Searching for Magnetism in Hydrogenated Graphene: Using Highly Hydrogenated Graphene Prepared <i>via</i> Birch Reduction of Graphite Oxides. ACS Nano, 2013, 7, 5930-5939.	7.3	149
673	Could Carbonaceous Impurities in Reduced Graphenes be Responsible for Some of Their Extraordinary Electrocatalytic Activities?. Chemistry - an Asian Journal, 2013, 8, 1200-1204.	1.7	18
674	The Toxicity of Graphene Oxides: Dependence on the Oxidative Methods Used. Chemistry - A European Journal, 2013, 19, 8227-8235.	1.7	138
675	Precise Tuning of Surface Composition and Electronâ€Transfer Properties of Graphene Oxide Films through Electroreduction. Chemistry - A European Journal, 2013, 19, 4748-4753.	1.7	101
676	Complex organic molecules are released during thermal reduction of graphite oxides. Physical Chemistry Chemical Physics, 2013, 15, 9257.	1.3	32
677	Sulfur-Doped Graphene <i>via</i> Thermal Exfoliation of Graphite Oxide in H ₂ S, SO ₂ , or CS ₂ Gas. ACS Nano, 2013, 7, 5262-5272.	7.3	321
678	Graphenes prepared from multi-walled carbon nanotubes and stacked graphene nanofibers for detection of 2,4,6-trinitrotoluene (TNT) in seawater. Analyst, The, 2013, 138, 1700.	1.7	32
679	Graphene Oxide Nanoribbons from the Oxidative Opening of Carbon Nanotubes Retain Electrochemically Active Metallic Impurities. Angewandte Chemie - International Edition, 2013, 52, 8685-8688.	7.2	54
680	Direct electrochemistry of copper oxide nanoparticles in alkaline media. Electrochemistry Communications, 2013, 28, 51-53.	2.3	61
681	Challenges of the movement of catalytic micromotors in blood. Lab on A Chip, 2013, 13, 1930.	3.1	69
682	Halogenation of Graphene with Chlorine, Bromine, or Iodine by Exfoliation in a Halogen Atmosphere. Chemistry - A European Journal, 2013, 19, 2655-2662.	1.7	143
683	Corrosion of self-propelled catalytic microengines. Chemical Communications, 2013, 49, 9125.	2.2	27
684	Blood Proteins Strongly Reduce the Mobility of Artificial Selfâ€Propelled Micromotors. Chemistry - A European Journal, 2013, 19, 16756-16759.	1.7	27

#	Article	IF	Citations
685	Surfactant Capsules Propel Interfacial Oil Droplets: An Environmental Cleanup Strategy. ChemPlusChem, 2013, 78, 384-384.	1.3	3
686	Electrochemistry in (Bio)â€Nanoanalysis, Electromigration and Liquid Phase Separations. Electrophoresis, 2013, 34, 1977-1978.	1.3	1
687	Innentitelbild: Graphene Oxide Nanoribbons from the Oxidative Opening of Carbon Nanotubes Retain Electrochemically Active Metallic Impurities (Angew. Chem. 33/2013). Angewandte Chemie, 2013, 125, 8634-8634.	1.6	0
688	Titelbild: "Metal-Free―Catalytic Oxygen Reduction Reaction on Heteroatom-Doped Graphene is Caused by Trace Metal Impurities (Angew. Chem. 51/2013). Angewandte Chemie, 2013, 125, 13721-13721.	1.6	0
689	Graphene, Carbon Nanotubes and Nanoparticles in Cell Metabolism. Current Drug Metabolism, 2012, 13, 251-256.	0.7	7
690	Thermally reduced graphenes exhibiting a close relationship to amorphous carbon. Nanoscale, 2012, 4, 4972.	2.8	80
691	Gold Nanospacers Greatly Enhance the Capacitance of Electrochemically Reduced Graphene. ChemPlusChem, 2012, 77, 71-73.	1.3	24
692	Graphenes Prepared by Hummers, Staudenmaier and Hofmann Methods for Analysis of TNTâ€Based Nitroaromatic Explosives in Seawater. Electroanalysis, 2012, 24, 2085-2093.	1.5	40
693	Reduction Pathways of 2,4,6-Trinitrotoluene: An Electrochemical and Theoretical Study. Journal of Physical Chemistry C, 2012, 116, 4243-4251.	1.5	88
694	Reynolds numbers exhibit dramatic influence on directionality of movement of self-propelled systems. Physical Chemistry Chemical Physics, 2012, 14, 6456.	1.3	9
695	Metal-based impurities in graphenes: application for electroanalysis. Analyst, The, 2012, 137, 2039.	1.7	20
696	Liquid–Liquid Interface Motion of a Capsule Motor Powered by the Interlayer Marangoni Effect. Journal of Physical Chemistry B, 2012, 116, 10960-10963.	1.2	39
697	Graphene for impedimetric biosensing. TrAC - Trends in Analytical Chemistry, 2012, 37, 12-21.	5.8	140
698	Micromotors with built-in compasses. Chemical Communications, 2012, 48, 10090.	2.2	61
699	Number of graphene layers exhibiting an influence on oxidation of DNA bases: Analytical parameters. Analytica Chimica Acta, 2012, 711, 29-31.	2.6	23
700	Surfactants show both large positive and negative effects on observed electron transfer rates at thermally reduced graphenes. Electrochemistry Communications, 2012, 22, 105-108.	2.3	15
701	Oxidation of DNA bases is influenced by their position in the DNA strand. Electrochemistry Communications, 2012, 22, 207-210.	2.3	13
702	High-pressure hydrogenation of graphene: towards graphane. Nanoscale, 2012, 4, 7006.	2.8	78

#	Article	IF	CITATIONS
703	Graphite Oxides: Effects of Permanganate and Chlorate Oxidants on the Oxygen Composition. Chemistry - A European Journal, 2012, 18, 13453-13459.	1.7	156
704	Graphane electrochemistry: Electron transfer at hydrogenated graphenes. Electrochemistry Communications, 2012, 25, 58-61.	2.3	21
705	Inherently Electroactive Graphene Oxide Nanoplatelets As Labels for Single Nucleotide Polymorphism Detection. ACS Nano, 2012, 6, 8546-8551.	7. 3	113
706	Renewal of sp2 bonds in graphene oxides via dehydrobromination. Journal of Materials Chemistry, 2012, 22, 23227.	6.7	73
707	Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide. Physical Chemistry Chemical Physics, 2012, 14, 12794.	1.3	28
708	Impurities in graphenes and carbon nanotubes and their influence on the redox properties. Chemical Science, 2012, 3, 3347.	3.7	123
709	Nanoporous carbon as a sensing platform for DNA detection: The use of impedance spectroscopy for hairpin-DNA based assay. RSC Advances, 2012, 2, 1021-1024.	1.7	14
710	Electrochemical properties of carbon nanodiscs. RSC Advances, 2012, 2, 1565-1568.	1.7	9
711	Electroactivity of graphene oxide on different substrates. RSC Advances, 2012, 2, 10575.	1.7	4
712	Stripping voltammetry at chemically modified graphenes. RSC Advances, 2012, 2, 6068.	1.7	16
713	Impedimetric immunoglobulin G immunosensor based on chemically modified graphenes. Nanoscale, 2012, 4, 921-925.	2.8	54
714	Detection of DNA hybridization on chemically modified graphene platforms. Analyst, The, 2012, 137, 580-583.	1.7	54
715	Voltammetry of carbon nanotubes and graphenes: excitement, disappointment, and reality. Chemical Record, 2012, 12, 201-213.	2.9	103
716	90 Years of Polarography: Back to the Future. Chemical Record, 2012, 12, 13-13.	2.9	0
717	Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale, 2012, 4, 3515.	2.8	363
718	Graphene oxide reduction by standard industrial reducing agent: thiourea dioxide. Journal of Materials Chemistry, 2012, 22, 11054.	6.7	125
719	Impedimetric thrombin aptasensor based on chemically modified graphenes. Nanoscale, 2012, 4, 143-147.	2.8	69
720	Introducing dichlorocarbene in graphene. Chemical Communications, 2012, 48, 5376.	2.2	51

#	Article	IF	Citations
721	Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12899-12904.	3.3	195
722	Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis. Nanoscale, 2012, 4, 5002.	2.8	214
723	Oxidation of DNA Bases Influenced by the Presence of Other Bases. Electroanalysis, 2012, 24, 1147-1152.	1.5	12
724	Nanoporous Carbon Materials for Electrochemical Sensing. Chemistry - an Asian Journal, 2012, 7, 412-416.	1.7	39
725	Inherent Electrochemistry and Activation of Chemically Modified Graphenes for Electrochemical Applications. Chemistry - an Asian Journal, 2012, 7, 759-770.	1.7	37
726	The Inherent Electrochemistry of Nickel/Nickelâ€Oxide Nanoparticles. Chemistry - an Asian Journal, 2012, 7, 702-706.	1.7	24
727	Friedel–Crafts Acylation on Graphene. Chemistry - an Asian Journal, 2012, 7, 1009-1012.	1.7	52
728	Macroscopic Selfâ€Propelled Objects. Chemistry - an Asian Journal, 2012, 7, 1994-2002.	1.7	58
729	Graphene Sheet Orientation of Parent Material Exhibits Dramatic Influence on Graphene Properties. Chemistry - an Asian Journal, 2012, 7, 2367-2372.	1.7	23
730	On Oxygen ontaining Groups in Chemically Modified Graphenes. Chemistry - A European Journal, 2012, 18, 4541-4548.	1.7	69
731	Bioavailability of Metallic Impurities in Carbon Nanotubes Is Greatly Enhanced by Ultrasonication. Chemistry - A European Journal, 2012, 18, 11593-11596.	1.7	27
732	Inside Cover: On Oxygen-Containing Groups in Chemically Modified Graphenes (Chem. Eur. J. 15/2012). Chemistry - A European Journal, 2012, 18, 4438-4438.	1.7	0
733	Lithium Aluminum Hydride as Reducing Agent for Chemically Reduced Graphene Oxides. Chemistry of Materials, 2012, 24, 2292-2298.	3.2	187
734	Graphene materials preparation methods have dramatic influence upon their capacitance. Electrochemistry Communications, 2012, 14, 5-8.	2.3	96
735	Surfactants used for dispersion of graphenes exhibit strong influence on electrochemical impedance spectroscopic response. Electrochemistry Communications, 2012, 16, 19-21.	2.3	16
736	Graphene/carbon nanotube composites not exhibiting synergic effect for supercapacitors: The resulting capacitance being average of capacitance of individual components. Electrochemistry Communications, 2012, 17, 45-47.	2.3	42
737	Comparison of the electroanalytical performance of chemically modified graphenes (CMGs) using uric acid. Electrochemistry Communications, 2012, 20, 141-144.	2.3	12
738	Nanographite Impurities in Carbon Nanotubes: Their Influence on the Oxidation of Insulin, Nitric Oxide, and Extracellular Thiols. Chemistry - A European Journal, 2012, 18, 1401-1407.	1.7	21

#	Article	IF	CITATIONS
739	Nucleic Acid Functionalized Graphene for Biosensing. Chemistry - A European Journal, 2012, 18, 1668-1673.	1.7	72
740	Redoxâ€Active Nickel in Carbon Nanotubes and Its Direct Determination. Chemistry - A European Journal, 2012, 18, 3338-3344.	1.7	25
741	Size Dependant Electrochemical Behavior of Silver Nanoparticles with Sizes of 10, 20, 40, 80 and 107 nm. Electroanalysis, 2012, 24, 615-617.	1.5	97
742	Metallic Impurities in Graphenes Prepared from Graphite Can Dramatically Influence Their Properties. Angewandte Chemie - International Edition, 2012, 51, 500-503.	7.2	164
743	Amorphous Carbon Impurities Play an Active Role in Redox Processes of Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 25281-25284.	1.5	40
744	On the Origin of the Solid-State Thermochromism and Thermal Fatigue of Polycyclic Overcrowded Enes. Journal of Physical Chemistry A, 2011, 115, 8563-8570.	1.1	14
745	Influence of gold nanoparticle size (2–50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study. Physical Chemistry Chemical Physics, 2011, 13, 4980.	1.3	67
746	Chemically-modified graphenes for oxidation of DNA bases: analytical parameters. Analyst, The, 2011, 136, 4738.	1.7	38
747	Impurities within carbon nanotubes govern the electrochemical oxidation of substituted hydrazines. Physical Chemistry Chemical Physics, 2011, 13, 10818.	1.3	16
748	Enhanced diffusion of pollutants by self-propulsion. Physical Chemistry Chemical Physics, 2011, 13, 12755.	1.3	24
749	Nanomaterials meet microfluidics. Chemical Communications, 2011, 47, 5671.	2.2	126
750	Graphene-based nanomaterials for energy storage. Energy and Environmental Science, 2011, 4, 668-674.	15.6	1,169
751	Graphene Platform for Hairpin-DNA-Based Impedimetric Genosensing. ACS Nano, 2011, 5, 2356-2361.	7.3	289
752	Nanographite Impurities within Carbon Nanotubes are responsible for their Stable and Sensitive Response Toward Electrochemical Oxidation of Phenols. Journal of Physical Chemistry C, 2011, 115, 5530-5534.	1.5	32
75 3	Graphene Oxides Exhibit Limited Cathodic Potential Window Due to Their Inherent Electroactivity. Journal of Physical Chemistry C, 2011, 115, 17647-17650.	1.5	43
754	Direct Determination of Bioavailable Molybdenum in Carbon Nanotubes. Chemistry - A European Journal, 2011, 17, 1806-1810.	1.7	11
755	Carbon nanotubes can exhibit negative effects in electroanalysis due to presence of nanographite impurities. Electrochemistry Communications, 2011, 13, 426-428.	2.3	24
756	Nanographitic impurities are responsible for electrocatalytic activity of carbon nanotubes towards oxidation of carbamazepine. Electrochemistry Communications, 2011, 13, 781-784.	2.3	24

#	Article	IF	CITATIONS
757	Regulatory peptides desmopressin and glutathione voltammetric determination on nickel oxide modified electrodes. Electrochemistry Communications, 2011, 13, 963-965.	2.3	31
758	On reproducibility of preparation of basal plane pyrolytic graphite electrode surface. Electrochemistry Communications, 2011, 13, 1054-1059.	2.3	4
7 59	Electrochemistry of folded graphene edges. Nanoscale, 2011, 3, 2256.	2.8	74
760	Nanotoxicology: The Molecular Science Point of View. Chemistry - an Asian Journal, 2011, 6, 340-348.	1.7	67
761	Nanographite Impurities of Singleâ€Walled and Doubleâ€Walled Carbon Nanotubes Are Responsible for the Observed "Electrocatalytic―Effect towards the Reduction of Azo Groups. Chemistry - an Asian Journal, 2011, 6, 804-807.	1.7	28
762	Hydroquinone Electrochemistry on Carbon Nanotubes is Accelerated by Nanographite Impurities. Chemistry - an Asian Journal, 2011, 6, 1019-1021.	1.7	23
763	Metallic Impurities are Responsible for Electrocatalytic Behavior of Carbon Nanotubes Towards Sulfides. Chemistry - an Asian Journal, 2011, 6, 2304-2307.	1.7	31
764	Solidâ€State Electrochemistry of Graphene Oxides: Absolute Quantification of Reducible Groups using Voltammetry. Chemistry - an Asian Journal, 2011, 6, 2899-2901.	1.7	84
765	Inside Cover: Nanographite Impurities of Single-Walled and Double-Walled Carbon Nanotubes Are Responsible for the Observed "Electrocatalytic―Effect towards the Reduction of Azo Groups (Chem.) Tj ETG	Qq 11.1 7 0.78	343114 rgBT /(
766	Inside Cover: Solid-State Electrochemistry of Graphene Oxides: Absolute Quantification of Reducible Groups using Voltammetry (Chem. Asian J. 11/2011). Chemistry - an Asian Journal, 2011, 6, 2850-2850.	1.7	3
767	Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles. Analytical and Bioanalytical Chemistry, 2011, 399, 127-131.	1.9	125
768	Graphene in biosensing. Materials Today, 2011, 14, 308-315.	8.3	733
769	Nanogold Spacing of Stacked Graphene Nanofibers for Supercapacitors. Electroanalysis, 2011, 23, 858-861.	1.5	17
770	Influence of Methyl Substituent Position on Redox Properties of Nitroaromatics Related to 2,4,6â€Trinitrotoluene. Electroanalysis, 2011, 23, 2350-2356.	1.5	42
771	Electrochemistry in Microfluidics and Capillary Electrophoresis. Electrophoresis, 2011, 32, 793-794.	1.3	6
772	Signal Transducers and Enzyme Cofactors are Susceptible to Oxidation by Nanographite Impurities in Carbon Nanotube Materials. Chemistry - A European Journal, 2011, 17, 5544-5548.	1.7	37
773	Electrochemistry at Chemically Modified Graphenes. Chemistry - A European Journal, 2011, 17, 10763-10770.	1.7	288
774	Externalâ€Energyâ€Independent Polymer Capsule Motors and Their Cooperative Behaviors. Chemistry - A European Journal, 2011, 17, 12020-12026.	1.7	114

#	Article	IF	Citations
775	Inside Cover: Signal Transducers and Enzyme Cofactors are Susceptible to Oxidation by Nanographite Impurities in Carbon Nanotube Materials (Chem. Eur. J. 20/2011). Chemistry - A European Journal, 2011, 17, 5450-5450.	1.7	0
776	Molybdenum metallic nanoparticle detection via differential pulse voltammetry. Electrochemistry Communications, 2011, 13, 203-204.	2.3	21
777	Electroanalytical parameters of carbon nanotubes are inferior with respect to well defined surfaces of glassy carbon and EPPG. Electrochemistry Communications, 2011, 13, 213-216.	2.3	16
778	Graphene based nanomaterials as electrochemical detectors in Lab-on-a-chip devices. Electrochemistry Communications, 2011, 13, 517-519.	2.3	50
779	Electron hopping rate measurements in ITO junctions: Charge diffusion in a layer-by-layer deposited ruthenium(II)-bis(benzimidazolyI)pyridine-phosphonate–TiO2 film. Journal of Electroanalytical Chemistry, 2011, 657, 196-201.	1.9	13
780	Platelet graphite nanofibers/soft polymer composites for electrochemical sensing and biosensing. Sensors and Actuators B: Chemical, 2011, 156, 79-83.	4.0	12
781	Editorial [Hot Topic: Advanced Materials and Nanotechnology for DNA Detection (Guest Editor:) Tj ETQq1 1 0.78	4314 rgB1 0.1	「/gverlock 1
782	Graphene-based nanomaterials and their electrochemistry. Chemical Society Reviews, 2010, 39, 4146.	18.7	1,008
783	The Electrochemical Response of Graphene Sheets is Independent of the Number of Layers from a Single Graphene Sheet to Multilayer Stacked Graphene Platelets. Chemistry - an Asian Journal, 2010, 5, 2355-2357.	1.7	70
784	Platelet Graphite Nanofibers for Electrochemical Sensing and Biosensing: The Influence of Graphene Sheet Orientation. Chemistry - an Asian Journal, 2010, 5, 266-271.	1.7	120
785	Effect of Nitric Acid "Washing―Procedure on Electrochemical Behavior of Carbon Nanotubes and Glassy Carbon μ-Particles. Nanoscale Research Letters, 2010, 5, 846-852.	3.1	30
786	Magnetic Control of Tubular Catalytic Microbots for the Transport, Assembly, and Delivery of Microâ€objects. Advanced Functional Materials, 2010, 20, 2430-2435.	7.8	390
787	Nanomotors: Magnetic Control of Tubular Catalytic Microbots for the Transport, Assembly, and Delivery of Micro-objects (Adv. Funct. Mater. 15/2010). Advanced Functional Materials, 2010, 20, n/a-n/a.	7.8	4
788	Regulatory Peptides Are Susceptible to Oxidation by Metallic Impurities within Carbon Nanotubes. Chemistry - A European Journal, 2010, 16, 1786-1792.	1.7	79
789	Nanographite Impurities Dominate Electrochemistry of Carbon Nanotubes. Chemistry - A European Journal, 2010, 16, 10946-10949.	1.7	73
790	Carbon nanotubeâ€"chalcogenide glass composite. Journal of Solid State Chemistry, 2010, 183, 144-149.	1.4	28
791	Stacked graphene nanofibers doped polypyrrole nanocomposites for electrochemical sensing. Electrochemistry Communications, 2010, 12, 1788-1791.	2.3	33
792	Graphene for electrochemical sensing and biosensing. TrAC - Trends in Analytical Chemistry, 2010, 29, 954-965.	5.8	1,041

#	Article	IF	Citations
793	Multilayer graphene nanoribbons exhibit larger capacitance than their few-layer and single-layer graphene counterparts. Electrochemistry Communications, 2010, 12, 1375-1377.	2.3	68
794	Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Physical Chemistry Chemical Physics, 2010, 12, 8943.	1.3	81
795	Rapid, Sensitive, and Label-Free Impedimetric Detection of a Single-Nucleotide Polymorphism Correlated to Kidney Disease. Analytical Chemistry, 2010, 82, 3772-3779.	3.2	22
796	Investigation of the Mechanism of Adsorption of \hat{l}^2 -Nicotinamide Adenine Dinucleotide on Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2010, 1, 122-125.	2.1	25
797	Single-, Few-, and Multilayer Graphene Not Exhibiting Significant Advantages over Graphite Microparticles in Electroanalysis. Analytical Chemistry, 2010, 82, 8367-8370.	3.2	66
798	Electrochemistry of a Whole Group of Compounds Affected by Metallic Impurities within Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 21296-21298.	1.5	56
799	Detection of Biomarkers with Carbon Nanotube-Based Immunosensors. Methods in Molecular Biology, 2010, 625, 227-237.	0.4	6
800	Carbon Nanotube Biosensors Based on Electrochemical Detection. Methods in Molecular Biology, 2010, 625, 205-212.	0.4	5
801	Enzymatic Detection Based on Carbon Nanotubes. Methods in Molecular Biology, 2010, 625, 197-204.	0.4	0
802	Electrochemically powered self-propelled electrophoretic nanosubmarines. Nanoscale, 2010, 2, 1643.	2.8	142
803	Influence of Nitric Acid Treatment of Carbon Nanotubes on Their Physico-Chemical Properties. Journal of Nanoscience and Nanotechnology, 2009, 9, 2671-2676.	0.9	75
804	Germanium-oxide-coated carbon nanotubes. Nanotechnology, 2009, 20, 425606.	1.3	6
805	A Mechanism of Adsorption of $\hat{l}^2 \hat{a} \in \mathbb{N}$ icotinamide Adenine Dinucleotide on Graphene Sheets: Experiment and Theory. Chemistry - A European Journal, 2009, 15, 10851-10856.	1.7	105
806	The Electrochemistry of Carbon Nanotubes: Fundamentals and Applications. Chemistry - A European Journal, 2009, 15, 4970-4978.	1.7	351
807	Bimetallic Nickel–Iron Impurities within Singleâ€Walled Carbon Nanotubes Exhibit Redox Activity towards the Oxidation of Amino Acids. ChemPhysChem, 2009, 10, 1770-1773.	1.0	63
808	Effects of heterogeneous electronâ€transfer rate on the resolution of electrophoretic separations based on microfluidics with endâ€column electrochemical detection. Electrophoresis, 2009, 30, 3334-3338.	1.3	30
809	Nanomaterials as electrochemical detectors in microfluidics and CE: Fundamentals, designs, and applications. Electrophoresis, 2009, 30, 3315-3323.	1.3	84
810	Electrochemistry in Microfluidics and Capillary Electrophoresis. Electrophoresis, 2009, 30, 3303-3304.	1.3	1

#	Article	IF	CITATIONS
811	Electrochemistry of graphene: new horizons for sensing and energy storage. Chemical Record, 2009, 9, 211-223.	2.9	578
812	Phaseâ€Inversion Method for Incorporation of Metal Nanoparticles into Carbonâ€Nanotube/Polymer Composites. Small, 2009, 5, 795-799.	5.2	17
813	Imaging of Oxygenâ€Containing Groups on Walls of Carbon Nanotubes. Chemistry - an Asian Journal, 2009, 4, 250-253.	1.7	31
814	Metallic Impurities <i>within</i> Residual Catalyst Metallic Nanoparticles Are in Some Cases Responsible for "Electrocatalytic―Effect of Carbon Nanotubes. Chemistry - an Asian Journal, 2009, 4, 554-560.	1.7	90
815	Ultrathin Organically Modified Silica Layer Coated Carbon Nanotubes: Fabrication, Characterization and Electrical Insulating Properties. Chemistry - an Asian Journal, 2009, 4, 662-667.	1.7	3
816	Nanorobots: The Ultimate Wireless Selfâ€Propelled Sensing and Actuating Devices. Chemistry - an Asian Journal, 2009, 4, 1402-1410.	1.7	179
817	What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties?. Nanoscale, 2009, 1, 260.	2.8	130
818	The preferential electrocatalytic behaviour of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains. Analyst, The, 2009, 134, 657.	1.7	49
819	Electrochemical activation of carbon nanotube/polymer composites. Physical Chemistry Chemical Physics, 2009, 11, 182-186.	1.3	36
820	Lab-on-a-chip for ultrasensitive detection of carbofuran by enzymatic inhibition with replacement of enzyme using magnetic beads. Lab on A Chip, 2009, 9, 213-218.	3.1	58
821	Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms. Lab on A Chip, 2009, 9, 346-353.	3.1	83
822	Carbon nanotube/polysulfone soft composites: preparation, characterization and application for electrochemical sensing of biomarkers. Physical Chemistry Chemical Physics, 2009, 11, 7721.	1.3	23
823	Multicomponent Metallic Impurities and Their Influence upon the Electrochemistry of Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 4401-4405.	1.5	130
824	Towards an Ultrasensitive Method for the Determination of Metal Impurities in Carbon Nanotubes. Small, 2008, 4, 1476-1484.	5.2	124
825	Trends in analysis of explosives by microchip electrophoresis and conventional CE. Electrophoresis, 2008, 29, 269-273.	1,3	41
826	Carbon nanotube disposable detectors in microchip capillary electrophoresis for waterâ€soluble vitamin determination: Analytical possibilities in pharmaceutical quality control. Electrophoresis, 2008, 29, 2997-3004.	1.3	59
827	Relationship between Carbon Nanotube Structure and Electrochemical Behavior: Heterogeneous Electron Transfer at Electrochemically Activated Carbon Nanotubes. Chemistry - an Asian Journal, 2008, 3, 2046-2055.	1.7	100
828	Chapter 35 Microchip electrophoresis/electrochemistry systems for analysis of nitroaromatic explosives. Comprehensive Analytical Chemistry, 2007, , 873-884.	0.7	2

#	Article	lF	Citations
829	Procedure 53 DNA analysis by using gold nanoparticle as labels. Comprehensive Analytical Chemistry, 2007, , e381-e388.	0.7	0
830	Procedure 49 Analysis of nitroaromatic explosives with microchip electrophoresis using a graphite–epoxy composite detector. Comprehensive Analytical Chemistry, 2007, , e351-e355.	0.7	0
831	Redox Protein Noncovalent Functionalization of Double-Wall Carbon Nanotubes: Electrochemical Binder-less Glucose Biosensor. Journal of Nanoscience and Nanotechnology, 2007, 7, 3590-3595.	0.9	19
832	Organically modified sols as pseudostationary phases for microchip electrophoresis. Talanta, 2007, 72, 711-715.	2.9	16
833	Contactless conductivity detection for microfluidics: Designs and applications. Talanta, 2007, 74, 358-364.	2.9	136
834	Micro- and nanotechnology in electrochemical detection science. Talanta, 2007, 74, 275-275.	2.9	8
835	Carbon nanotube/polysulfone composite screen-printed electrochemical enzyme biosensors. Analyst, The, 2007, 132, 142-147.	1.7	78
836	Carbon Nanotubes Contain Residual Metal Catalyst Nanoparticles even after Washing with Nitric Acid at Elevated Temperature Because These Metal Nanoparticles Are Sheathed by Several Graphene Sheets. Langmuir, 2007, 23, 6453-6458.	1.6	267
837	Double Wall Carbon Nanotubes as Electrochemical Biosensors of NADH and Glucose., 2007,,.		0
838	Food Analysis on Microfluidic Devices Using Ultrasensitive Carbon Nanotubes Detectors. Analytical Chemistry, 2007, 79, 7408-7415.	3.2	120
839	Nanoprecise Spontaneous Coating of Carbon Nanotubes with a Europium Hydroxide Layer. Chemistry of Materials, 2007, 19, 6513-6517.	3.2	19
840	Spontaneous Coating of Carbon Nanotubes with an Ultrathin Polypyrrole Layer. Chemistry - A European Journal, 2007, 13, 7644-7649.	1.7	40
841	Carbon nanotube detectors for microchip CE: Comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces. Electrophoresis, 2007, 28, 1274-1280.	1.3	62
842	Microfluidics in amino acid analysis. Electrophoresis, 2007, 28, 2113-2124.	1.3	54
843	Electrochemical nanobiosensors. Sensors and Actuators B: Chemical, 2007, 123, 1195-1205.	4.0	447
844	Electrochemical properties of double wall carbon nanotube electrodes. Nanoscale Research Letters, 2007, 2, 87-93.	3.1	73
845	Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosensors and Bioelectronics, 2007, 22, 1961-1967.	5.3	143
846	Carbon nanotube/polysulfone screen-printed electrochemical immunosensor. Biosensors and Bioelectronics, 2007, 23, 332-340.	5.3	114

#	Article	IF	Citations
847	Crystal and electrochemical properties of water dispersed CdS nanocrystals obtained via reverse micelles and arrested precipitation. Nanotechnology, 2006, 17, 2553-2559.	1.3	18
848	Microchip flow-injection analysis of trace 2,4,6-trinitrotoluene (TNT) using mercury-amalgam electrochemical detector. Talanta, 2006, 69, 984-987.	2.9	42
849	Analysis of nerve agents using capillary electrophoresis and laboratory-on-a-chip technology. Journal of Chromatography A, 2006, 1113, 5-13.	1.8	42
850	Carbon nanotube-epoxy composites for electrochemical sensing. Sensors and Actuators B: Chemical, 2006, 113, 617-622.	4.0	179
851	New materials for electrochemical sensing VII. Microfluidic chip platforms. TrAC - Trends in Analytical Chemistry, 2006, 25, 219-235.	5.8	129
852	Microchip Capillary Electrophoresis with a Single-Wall Carbon Nanotube/Gold Electrochemical Detector for Determination of Aminophenols and Neurotransmitters. Mikrochimica Acta, 2006, 152, 261-265.	2.5	55
853	Structures of inclusion complexes of halogenbenzoic acids and α-cyclodextrin based on AM1 calculations. Journal of Molecular Modeling, 2006, 12, 799-803.	0.8	18
854	Microchip Capillary Electrophoresis-Electrochemistry with Rigid Graphite-Epoxy Composite Detector. Electroanalysis, 2006, 18, 207-210.	1.5	13
855	Analysis of explosivesvia microchip electrophoresis and conventional capillary electrophoresis: A review. Electrophoresis, 2006, 27, 244-256.	1.3	99
856	Microchip electrophoresis with wall-jet electrochemical detector: Influence of detection potential upon resolution of solutes. Electrophoresis, 2006, 27, 5068-5072.	1.3	16
857	Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode. Electrochimica Acta, 2005, 50, 3702-3707.	2.6	97
858	New materials for electrochemical sensing VI: Carbon nanotubes. TrAC - Trends in Analytical Chemistry, 2005, 24, 826-838.	5.8	626
859	Stripping Voltammetry with Bismuth Modified Graphite-Epoxy Composite Electrodes. Electroanalysis, 2005, 17, 881-886.	1.5	49
860	Nonaqueous capillary electrophoretic assays ofp-phenylene-bis-4,4'-(1-aryl-2,6-diphenylpyridinium) molecular wires. Electrophoresis, 2005, 26, 4465-4467.	1.3	4
861	Glucose Biosensor Based on Carbon Nanotube Epoxy Composites. Journal of Nanoscience and Nanotechnology, 2005, 5, 1694-1698.	0.9	62
862	Sensitive stripping voltammetry of heavy metals by using a composite sensor based on a built-in bismuth precursor. Analyst, The, 2005, 130, 971.	1.7	52
863	Microchip-based electrochromatography: designs and applications. Talanta, 2005, 66, 1048-1062.	2.9	90
864	Magnetically Trigged Direct Electrochemical Detection of DNA Hybridization Using Au67Quantum Dot as Electrical Tracer. Langmuir, 2005, 21, 9625-9629.	1.6	133

#	Article	IF	CITATIONS
865	Microchip Separation and Electrochemical Detection of Amino Acids and Peptides Following Precolumn Derivatization with Naphthalene-2,3-dicarboxyaldehyde. Electroanalysis, 2003, 15, 862-865.	1.5	45
866	Capillary zone electrophoretic assay of biologically active thioacridine derivatives. Journal of Separation Science, 2003, 26, 129-132.	1.3	5
867	Nonaqueous Electrophoresis Microchip Separations:Â Conductivity Detection in UV-Absorbing Solvents. Analytical Chemistry, 2003, 75, 341-345.	3.2	125
868	Chiral Analysis of Biogenic D,L-Amino Acids Derivatized by N-Fluorenylmethoxycarbonyl-L-alanyl N-Carboxyanhydride Using High-Performance Liquid Chromatography. Journal of Chromatographic Science, 2002, 40, 505-508.	0.7	7
869	Î ² -CYCLODEXTRIN-MODIFIED MONOLITHIC STATIONARY PHASES FOR CAPILLARY ELECTROCHROMATOGRAPHY AND NANO-HPLC CHIRAL ANALYSIS OF EPHEDRINE AND IBUPROFEN. Journal of Liquid Chromatography and Related Technologies, 2002, 25, 2473-2484.	0.5	37
870	Single-Channel Microchip for Fast Screening and Detailed Identification of Nitroaromatic Explosives or Organophosphate Nerve Agents. Analytical Chemistry, 2002, 74, 1187-1191.	3.2	148
871	Measurements of Chemical Warfare Agent Degradation Products Using an Electrophoresis Microchip with Contactless Conductivity Detector. Analytical Chemistry, 2002, 74, 6121-6125.	3.2	131
872	A chip-based capillary electrophoresis-contactless conductivity microsystem for fast measurements of low-explosive ionic components. Analyst, The, 2002, 127, 719-723.	1.7	96
873	Contactless Conductivity Detector for Microchip Capillary Electrophoresis. Analytical Chemistry, 2002, 74, 1968-1971.	3.2	211
874	Poly(methylmethacrylate) Microchip Electrophoresis Device with Thick-Film Amperometric Detector: Towards Fully Disposable Lab-on-a-Chip. Journal of the Association for Laboratory Automation, 2002, 7, 73-74.	2.8	0
875	Thick-Film Electrochemical Detectors for Poly(dimethylsiloxane)-based Microchip Capillary Electrophoresis. Electroanalysis, 2002, 14, 1251-1255.	1.5	50
876	Towards disposable lab-on-a-chip: Poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection. Electrophoresis, 2002, 23, 596-601.	1.3	179
877	Chiral analysis of biogenicDL-amino acids derivatized by urethane - protected α-amino acidN-carboxyanhydride using capillary zone electrophoresis and micellar electrokinetic chromatography. Electrophoresis, 2002, 23, 2449-2456.	1.3	11
878	Non-aqueous capillary electrophoretic separation and detection of 6H-pyrimido[2,1-a]isoindoles. Journal of Separation Science, 2002, 25, 443-446.	1.3	4
879	Capillary electrophoresis–electrochemistry microfluidic system for the determination of organic peroxides. Journal of Chromatography A, 2002, 952, 249-254.	1.8	66
880	Dual Conductivity/Amperometric Detection System for Microchip Capillary Electrophoresis. Analytical Chemistry, 2002, 74, 5919-5923.	3.2	129
881	Towards disposable lab-on-a-chip: Poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection., 2002, 23, 596.		1
882	Single-channel microchip for fast screening and detailed identification of nitroaromatic explosives or organophosphate nerve agents. Analytical Chemistry, 2002, 74, 1187-91.	3.2	24

#	Article	IF	CITATIONS
883	Comparison of Association Constants of Cyclodextrins and Their tert-Butyl Derivatives With Halogenbenzoic Acids and Acridine Derivatives. Molecules, 2001, 6, 221-229.	1.7	8
884	DETERMINATION OF AMINO DERIVATIVES OF POLYCYCLIC AROMATIC HYDROCARBONS USING CAPILLARY ELECTROPHORESIS. Analytical Letters, 2001, 34, 1369-1375.	1.0	10
885	Determination of cyclodextrins and their derivatives by capillary electrophoresis with indirect UV and conductivity detection. Fresenius' Journal of Analytical Chemistry, 2001, 369, 666-669.	1.5	29
886	Gold Nanoparticle-Enhanced Microchip Capillary Electrophoresis. Analytical Chemistry, 2001, 73, 5625-5628.	3.2	163
887	Determination of cyclodextrin content using periodate oxidation by capillary electrophoresis. Journal of Chromatography A, 2000, 891, 201-206.	1.8	20
888	Polarographic and voltammetric determination of selected nitrated polycyclic aromatic hydrocarbons. Analytica Chimica Acta, 1999, 393, 141-146.	2.6	32
889	Nanocarbon electrochemistry. SPR Electrochemistry, 0, , 104-123.	0.7	1
890	Bipolar Electrochemistry as a Simple Synthetic Route toward Nanoscale Transition of Mo ₂ B ₅ and W ₂ B ₅ for Enhanced Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	6
891	Limitations and Benefits of MAX Phases in Electroanalysis. Electroanalysis, 0, , .	1.5	O