
Thomas F Duchaine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4049508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA Inhibition of Translation Initiation in Vitro by Targeting the Cap-Binding Complex eIF4F. Science, 2007, 317, 1764-1767.	12.6	458
2	DICER1: mutations, microRNAs and mechanisms. Nature Reviews Cancer, 2014, 14, 662-672.	28.4	404
3	Functional Proteomics Reveals the Biochemical Niche of C. elegans DCR-1 in Multiple Small-RNA-Mediated Pathways. Cell, 2006, 124, 343-354.	28.9	338
4	Mammalian miRNA RISC Recruits CAF1 and PABP to Affect PABP-Dependent Deadenylation. Molecular Cell, 2009, 35, 868-880.	9.7	331
5	miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4–NOT. Nature Structural and Molecular Biology, 2011, 18, 1211-1217.	8.2	286
6	Sequential rounds of RNA-dependent RNA transcription drive endogenous small-RNA biogenesis in the ERGO-1/Argonaute pathway. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3582-3587.	7.1	174
7	Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nature Genetics, 2014, 46, 39-44.	21.4	167
8	Naive Human Embryonic Stem Cells Can Give Rise to Cells with a Trophoblast-like Transcriptome and Methylome. Stem Cell Reports, 2020, 15, 198-213.	4.8	129
9	Requirement for the ERI/DICER Complex in Endogenous RNA Interference and Sperm Development in <i>Caenorhabditis elegans</i> . Genetics, 2009, 183, 1283-1295.	2.9	123
10	Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. Rna, 2014, 20, 1398-1409.	3.5	112
11	Mechanistic Insights into MicroRNA-Mediated Gene Silencing. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032771.	5.5	108
12	Cap-binding protein 4EHP effects translation silencing by microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5425-5430.	7.1	93
13	Pervasive and Cooperative Deadenylation of 3′UTRs by Embryonic MicroRNA Families. Molecular Cell, 2010, 40, 558-570.	9.7	92
14	Staufen2 isoforms localize to the somatodendritic domain of neurons and interact with different organelles. Journal of Cell Science, 2002, 115, 3285-95.	2.0	88
15	Ciphers and Executioners: How 3′-Untranslated Regions Determine the Fate of Messenger RNAs. Frontiers in Genetics, 2019, 10, 6.	2.3	72
16	Dicer's helicase domain is required for accumulation of some, but not all, C. elegans endogenous siRNAs. Rna, 2010, 16, 893-903.	3.5	64
17	The miR-17 â^¼ 92 microRNA Cluster Is a Global Regulator of Tumor Metabolism. Cell Reports, 2016, 16, 1915-1928.	6.4	58
18	Molecular mapping of the determinants involved in human Staufen–ribosome association.	3.7	51

Biochemical Journal, 2002, 365, 817-824.

THOMAS F DUCHAINE

#	Article	IF	CITATIONS
19	Tudor domain ERI-5 tethers an RNA-dependent RNA polymerase to DCR-1 to potentiate endo-RNAi. Nature Structural and Molecular Biology, 2012, 19, 90-97.	8.2	50
20	A non-canonical site reveals the cooperative mechanisms of microRNA-mediated silencing. Nucleic Acids Research, 2017, 45, 7212-7225.	14.5	48
21	FLCN and AMPK Confer Resistance to Hyperosmotic Stress via Remodeling of Glycogen Stores. PLoS Genetics, 2015, 11, e1005520.	3.5	46
22	Multimerization of Staufen1 in live cells. Rna, 2010, 16, 585-597.	3.5	43
23	Translational control of ERK signaling through miRNA/4EHP-directed silencing. ELife, 2018, 7, .	6.0	41
24	Molecular mapping of the determinants involved in human Staufen-ribosome association. Biochemical Journal, 2002, 365, 817-24.	3.7	35
25	On the availability of microRNA-induced silencing complexes, saturation of microRNA-binding sites and stoichiometry. Nucleic Acids Research, 2015, 43, 7556-7565.	14.5	32
26	MiR-35 buffers apoptosis thresholds in the C. elegans germline by antagonizing both MAPK and core apoptosis pathways. Cell Death and Differentiation, 2019, 26, 2637-2651.	11.2	31
27	Alternative polyadenylation confersÂ <i>Pten</i> mRNAs stability and resistance to microRNAs. Nucleic Acids Research, 2018, 46, 10340-10352.	14.5	29
28	Poly(A)-binding proteins are required for microRNA-mediated silencing and to promote target deadenylation in <i>C. elegans</i> . Nucleic Acids Research, 2016, 44, 5924-5935.	14.5	28
29	microRNA-mediated translation repression through GYF-1 and IFE-4 in <i>C. elegans</i> development. Nucleic Acids Research, 2021, 49, 4803-4815.	14.5	28
30	Oncogenic Biogenesis of pri-miR-17â^1/492 Reveals Hierarchy and Competition among Polycistronic MicroRNAs. Molecular Cell, 2019, 75, 340-356.e10.	9.7	26
31	A continuum of mRNP complexes in embryonic microRNA-mediated silencing. Nucleic Acids Research, 2017, 45, gkw872.	14.5	20
32	A Truncated Form of Dicer Tilts the Balance of RNA Interference Pathways. Cell Reports, 2013, 4, 454-463.	6.4	18
33	Repression of LKB1 by miR-17â^¼92 Sensitizes MYC-Dependent Lymphoma to Biguanide Treatment. Cell Reports Medicine, 2020, 1, 100014.	6.5	16
34	Eukaryotic mRNA Decapping Activation. Frontiers in Genetics, 2022, 13, 832547.	2.3	14
35	Expression of Autocrine Motility Factor/Phosphohexose Isomerase in Cos7 Cells. Biochemical and Biophysical Research Communications, 2000, 273, 213-218.	2.1	12
36	A Family of Argonaute-Interacting Proteins Gates Nuclear RNAi. Molecular Cell, 2020, 78, 862-875.e8.	9.7	11

#	Article	IF	CITATIONS
37	Novel LOTUS-domain proteins are organizational hubs that recruit C. elegans Vasa to germ granules. ELife, 2021, 10, .	6.0	11
38	Turning Dicer on its head. Nature Structural and Molecular Biology, 2012, 19, 365-366.	8.2	4
39	Cell-Free microRNA-Mediated Translation Repression in Caenorhabditis elegans. Methods in Molecular Biology, 2011, 725, 219-232.	0.9	3
40	SnapShot: Endogenous RNAi Machinery and Mechanisms. Cell, 2012, 150, 662-662.e2.	28.9	2
41	SnapShot: Endogenous RNAi Pathways. Cell, 2012, 150, 442-442.e1.	28.9	1