
Sabine Mueller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4048735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes and Development, 2013, 27, 985-990.	5.9	570
2	Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nature Medicine, 2014, 20, 1394-1396.	30.7	411
3	Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. Journal of Clinical Oncology, 2017, 35, 2934-2941.	1.6	232
4	Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro-Oncology, 2017, 19, now101.	1.2	217
5	MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nature Genetics, 2016, 48, 273-282.	21.4	214
6	Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. Journal of Experimental Medicine, 2018, 215, 141-157.	8.5	186
7	Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nature Medicine, 2020, 26, 712-719.	30.7	172
8	Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro-Oncology, 2017, 19, now254.	1.2	155
9	Imaging Characteristics of Pediatric Diffuse Midline Gliomas with Histone H3 K27M Mutation. American Journal of Neuroradiology, 2017, 38, 795-800.	2.4	132
10	The genetic landscape of ganglioglioma. Acta Neuropathologica Communications, 2018, 6, 47.	5.2	130
11	Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. Journal of Neuro-Oncology, 2019, 145, 97-105.	2.9	125
12	Radiation, Atherosclerotic Risk Factors, and Stroke Risk in Survivors of Pediatric Cancer: A Report From the Childhood Cancer Survivor Study. International Journal of Radiation Oncology Biology Physics, 2013, 86, 649-655.	0.8	124
13	Clinically Relevant and Minimally Invasive Tumor Surveillance of Pediatric Diffuse Midline Gliomas Using Patient-Derived Liquid Biopsy. Clinical Cancer Research, 2018, 24, 5850-5859.	7.0	118
14	Pediatric low-grade gliomas: next biologically driven steps. Neuro-Oncology, 2018, 20, 160-173.	1.2	116
15	Pediatric high-grade glioma: current molecular landscape and therapeutic approaches. Journal of Neuro-Oncology, 2017, 134, 541-549.	2.9	109
16	Targeting Wee1 for the treatment of pediatric high-grade gliomas. Neuro-Oncology, 2014, 16, 352-360.	1.2	102
17	Neuroblastoma: Biology and staging. Current Oncology Reports, 2009, 11, 431-438.	4.0	88
18	The genetic landscape of anaplastic pleomorphic xanthoastrocytoma. Brain Pathology, 2019, 29, 85-96.	4.1	88

#	Article	IF	CITATIONS
19	PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome. Neuro-Oncology, 2012, 14, 1146-1152.	1.2	85
20	A pilot precision medicine trial for children with diffuse intrinsic pontine glioma—PNOC003: A report from the Pacific Pediatric Neuroâ€Oncology Consortium. International Journal of Cancer, 2019, 145, 1889-1901.	5.1	84
21	Prospective feasibility and safety assessment of surgical biopsy for patients with newly diagnosed diffuse intrinsic pontine glioma. Neuro-Oncology, 2018, 20, 1547-1555.	1.2	82
22	Late Effects of Treatment of Pediatric Central Nervous System Tumors. Journal of Child Neurology, 2016, 31, 237-254.	1.4	81
23	EAG2 potassium channel with evolutionarily conserved function as a brain tumor target. Nature Neuroscience, 2015, 18, 1236-1246.	14.8	74
24	Pediatric low-grade gliomas: implications of the biologic era. Neuro-Oncology, 2017, 19, now209.	1.2	73
25	Mass cytometry detects H3.3K27M-specific vaccine responses in diffuse midline glioma. Journal of Clinical Investigation, 2020, 130, 6325-6337.	8.2	70
26	Response assessment in paediatric high-grade glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncology, The, 2020, 21, e317-e329.	10.7	69
27	Cooperation of the HDAC inhibitor vorinostat and radiation in metastatic neuroblastoma: Efficacy and underlying mechanisms. Cancer Letters, 2011, 306, 223-229.	7.2	66
28	Feasibility, safety, and indications for surgical biopsy of intrinsic brainstem tumors in children. Child's Nervous System, 2013, 29, 1313-1319.	1.1	62
29	Dual HDAC and PI3K Inhibition Abrogates NFκB- and FOXM1-Mediated DNA Damage Response to Radiosensitize Pediatric High-Grade Gliomas. Cancer Research, 2018, 78, 4007-4021.	0.9	60
30	The genetic landscape of gliomas arising after therapeutic radiation. Acta Neuropathologica, 2019, 137, 139-150.	7.7	57
31	Risk of First and Recurrent Stroke in Childhood Cancer Survivors Treated With Cranial and Cervical Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2013, 86, 643-648.	0.8	52
32	Molecular profiling and targeted therapy in pediatric gliomas: review and consensus recommendations. Neuro-Oncology, 2019, 21, 968-980.	1.2	52
33	Survival outcomes in pediatric recurrent high-grade glioma: results of a 20-year systematic review and meta-analysis. Journal of Neuro-Oncology, 2018, 137, 103-110.	2.9	48
34	WEE1 Kinase As a Target for Cancer Therapy. Journal of Clinical Oncology, 2015, 33, 3485-3487.	1.6	46
35	Clinical outcome and prognostic factors for central neurocytoma: twenty year institutional experience. Journal of Neuro-Oncology, 2016, 126, 193-200.	2.9	45
36	Phase I study of vemurafenib in children with recurrent or progressive BRAFV600E mutant brain tumors: Pacific Pediatric Neuro-Oncology Consortium study (PNOC-002). Oncotarget, 2020, 11, 1942-1952.	1.8	45

#	Article	IF	CITATIONS
37	Reirradiation and PD-1 inhibition with nivolumab for the treatment of recurrent diffuse intrinsic pontine glioma: a single-institution experience. Journal of Neuro-Oncology, 2018, 140, 629-638.	2.9	44
38	Optimal therapeutic targeting by HDAC inhibition in biopsy-derived treatment-naÃ⁻ve diffuse midline glioma models. Neuro-Oncology, 2021, 23, 376-386.	1.2	43
39	Recurrent stroke in childhood cancer survivors. Neurology, 2015, 85, 1056-1064.	1.1	41
40	Rates and Characteristics of Radiographically Detected Intracerebral Cavernous Malformations After Cranial Radiation Therapy in Pediatric Cancer Patients. Journal of Child Neurology, 2015, 30, 842-849.	1.4	39
41	Comparative Tumor RNA Sequencing Analysis for Difficult-to-Treat Pediatric and Young Adult Patients With Cancer. JAMA Network Open, 2019, 2, e1913968.	5.9	38
42	Overcoming resistance to single-agent therapy for oncogenic <i>BRAF</i> gene fusions <i>via</i> combinatorial targeting of MAPK and PI3K/mTOR signaling pathways. Oncotarget, 2017, 8, 84697-84713.	1.8	38
43	Imipridones affect tumor bioenergetics and promote cell lineage differentiation in diffuse midline gliomas. Neuro-Oncology, 2022, 24, 1438-1451.	1.2	36
44	Serial H3K27M cell-free tumor DNA (cf-tDNA) tracking predicts ONC201 treatment response and progression in diffuse midline glioma. Neuro-Oncology, 2022, 24, 1366-1374.	1.2	36
45	Comprehensive analysis of diverse low-grade neuroepithelial tumors with FGFR1 alterations reveals a distinct molecular signature of rosette-forming glioneuronal tumor. Acta Neuropathologica Communications, 2020, 8, 151.	5.2	35
46	Presence of cerebral microbleeds is associated with worse executive function in pediatric brain tumor survivors. Neuro-Oncology, 2016, 18, now163.	1.2	33
47	Survival advantage combining a BRAF inhibitor and radiation in BRAF V600E-mutant glioma. Journal of Neuro-Oncology, 2016, 126, 385-393.	2.9	31
48	Standardization of the liquid biopsy for pediatric diffuse midline glioma using ddPCR. Scientific Reports, 2021, 11, 5098.	3.3	31
49	Mechanisms of imipridones in targeting mitochondrial metabolism in cancer cells. Neuro-Oncology, 2021, 23, 542-556.	1.2	30
50	Diffuse midline glioma: review of epigenetics. Journal of Neuro-Oncology, 2020, 150, 27-34.	2.9	29
51	Large Vessel Arteriopathy After Cranial Radiation Therapy in Pediatric Brain Tumor Survivors. Journal of Child Neurology, 2018, 33, 359-366.	1.4	27
52	Diffusion Characteristics of Pediatric Diffuse Midline Gliomas with Histone H3-K27M Mutation Using Apparent Diffusion Coefficient Histogram Analysis. American Journal of Neuroradiology, 2019, 40, 1804-1810.	2.4	27
53	Pediatric hemispheric high-grade glioma: targeting the future. Cancer and Metastasis Reviews, 2020, 39, 245-260.	5.9	26
54	RO-02CEREBRAL MICROBLEEDS ARE ASSOCIATED WITH WORSE EXECUTIVE FUNCTION IN PEDIATRIC BRAIN TUMOR SURVIVORS. Neuro-Oncology, 2016, 18, iii159.2-iii159.	1.2	25

#	Article	IF	CITATIONS
55	Repurposing Vandetanib plus Everolimus for the Treatment of <i>ACVR1</i> -Mutant Diffuse Intrinsic Pontine Glioma. Cancer Discovery, 2022, 12, 416-431.	9.4	25
56	Case-based review: pediatric medulloblastoma. Neuro-Oncology Practice, 2017, 4, 138-150.	1.6	22
57	New therapeutic approaches for brainstem tumors: a comparison of delivery routes using nanoliposomal irinotecan in an animal model. Journal of Neuro-Oncology, 2018, 136, 475-484.	2.9	22
58	Recurrent non-canonical histone H3 mutations in spinal cord diffuse gliomas. Acta Neuropathologica, 2019, 138, 877-881.	7.7	21
59	IDH1 mutation can be present in diffuse astrocytomas and giant cell glioblastomas of young children under 10Âyears of age. Acta Neuropathologica, 2016, 132, 153-155.	7.7	20
60	Inactivating <i>MUTYH</i> germline mutations in pediatric patients with high-grade midline gliomas. Neuro-Oncology, 2016, 18, 752-753.	1.2	20
61	Poly (ADP-Ribose) polymerase inhibitor MK-4827 together with radiation as a novel therapy for metastatic neuroblastoma. Anticancer Research, 2013, 33, 755-62.	1.1	20
62	Pilot Study of Hyperpolarized ¹³ C Metabolic Imaging in Pediatric Patients with Diffuse Intrinsic Pontine Glioma and Other CNS Cancers. American Journal of Neuroradiology, 2021, 42, 178-184.	2.4	18
63	Deep sequencing of WNT-activated medulloblastomas reveals secondary SHH pathway activation. Acta Neuropathologica, 2018, 135, 635-638.	7.7	17
64	A systematic review and meta-analysis of outcomes in pediatric, recurrent ependymoma. Journal of Neuro-Oncology, 2019, 144, 445-452.	2.9	17
65	Brainstem Injury in Pediatric Patients Receiving Posterior Fossa Photon Radiation. International Journal of Radiation Oncology Biology Physics, 2019, 105, 1034-1042.	0.8	16
66	Advances in Targeted Therapies for Pediatric Brain Tumors. Current Treatment Options in Neurology, 2020, 22, 1.	1.8	16
67	Neurocognitive Outcomes in Children with Brain Tumors. Seminars in Neurology, 2020, 40, 315-321.	1.4	15
68	Stroke impact on mortality and psychologic morbidity within the Childhood Cancer Survivor Study. Cancer, 2020, 126, 1051-1059.	4.1	14
69	Survival after chemotherapy and stem cell transplant followed by delayed craniospinal irradiation is comparable to upfront craniospinal irradiation in pediatric embryonal brain tumor patients. Journal of Neuro-Oncology, 2017, 131, 359-368.	2.9	13
70	Abnormal Morphology of Select Cortical and Subcortical Regions in Neurofibromatosis Type 1. Radiology, 2018, 289, 499-508.	7.3	12
71	Diffuse hemispheric glioma, H3 G34-mutant: Genomic landscape of a new tumor entity and prospects for targeted therapy. Neuro-Oncology, 2021, 23, 1974-1976.	1.2	12
72	Neuro-Oncology Practice Clinical Debate: targeted therapy vs conventional chemotherapy in pediatric low-grade glioma. Neuro-Oncology Practice, 2020, 7, 4-10.	1.6	11

#	Article	IF	CITATIONS
73	Rate of radiation-induced microbleed formation on 7T MRI relates to cognitive impairment in young patients treated with radiation therapy for a brain tumor. Radiotherapy and Oncology, 2021, 154, 145-153.	0.6	11
74	Intracranial mesenchymal tumors with FET REB fusion are composed of at least two epigenetic subgroups distinct from meningioma and extracranial sarcomas. Brain Pathology, 2022, 32, e13037.	4.1	11
75	Preclinical and clinical evaluation of German-sourced ONC201 for the treatment of H3K27M-mutant diffuse intrinsic pontine glioma. Neuro-Oncology Advances, 2021, 3, vdab169.	0.7	11
76	Early detection of recurrent medulloblastoma: the critical role of diffusion-weighted imaging. Neuro-Oncology Practice, 2018, 5, 234-240.	1.6	10
77	Clinical Applications of Quantitative 3-Dimensional MRI Analysis for Pediatric Embryonal Brain Tumors. International Journal of Radiation Oncology Biology Physics, 2018, 102, 744-756.	0.8	10
78	Clinical trials in pediatric neuro-oncology: what is missing and how we can improve. CNS Oncology, 2016, 5, 233-239.	3.0	9
79	Oncolytic Measles Virotherapy and Opposition to Measles Vaccination. Mayo Clinic Proceedings, 2019, 94, 1834-1839.	3.0	9
80	NFB-17. MEK INHIBITOR BINIMETINIB SHOWS CLINICAL ACTIVITY IN CHILDREN WITH NEUROFIBROMATOSIS TYPE 1- ASSOCIATED PLEXIFORM NEUROFIBROMAS: A REPORT FROM PNOC AND THE NF CLINICAL TRIALS CONSORTIUM. Neuro-Oncology, 2020, 22, iii420-iii421.	1.2	9
81	Harmonization of postmortem donations for pediatric brain tumors and molecular characterization of diffuse midline gliomas. Scientific Reports, 2020, 10, 10954.	3.3	7
82	Radiation in Combination With Targeted Agents and Immunotherapies for Pediatric Central Nervous System Tumors - Progress, Opportunities, and Challenges. Frontiers in Oncology, 2021, 11, 674596.	2.8	7
83	PDCT-19. AÂSAFETY STUDY OF VEMURAFENIB, AN ORAL INHIBITOR OF BRAFV600E, IN CHILDREN WITH RECURRENT/REFRACTORY BRAFV600E MUTANT BRAIN TUMORS: PNOC-002. Neuro-Oncology, 2017, 19, vi188-vi188.	1.2	6
84	Pediatric Pineoblastoma: A pooled outcome study of North American and Australian therapeutic data. Neuro-Oncology Advances, 0, , .	0.7	6
85	Detection and Monitoring of Tumor Associated Circulating DNA in Patient Biofluids. Journal of Visualized Experiments, 2019, , .	0.3	5
86	HGG-15. SUCCESSFUL TREATMENT OF AN NTRK-FUSION POSITIVE INFANTILE GLIOBLASTOMA WITH LAROTRECTINIB, A TARGETED TRK INHIBITOR. Neuro-Oncology, 2019, 21, ii89-ii90.	1.2	4
87	EPCT-01. PHASE I STUDY OF DAY101 (TAK580) IN CHILDREN AND YOUNG ADULTS WITH RADIOGRAPHICALLY RECURRENT OR PROGRESSIVE LOW-GRADE GLIOMA (LGG). Neuro-Oncology, 2020, 22, iii304-iii304.	1.2	4
88	PDCT-04. PHASE 1 TRIAL OF WEE1 KINASE INHIBITOR AZD1775 COMBINED WITH RADIATION THERAPY FOR CHILDREN WITH NEWLY DIAGNOSED DIFFUSE INTRINSIC PONTINE GLIOMA: A REPORT FROM THE CHILDREN' ONCOLOGY GROUP PHASE 1 PILOT CONSORTIUM (ADVL1217). Neuro-Oncology, 2018, 20, vi201-vi201.	™S1.2	3
89	Relationship between 7T MR-angiography features of vascular injury and cognitive decline in young brain tumor patients treated with radiation therapy. Journal of Neuro-Oncology, 2021, 153, 143-152.	2.9	3
90	Multiâ€institutional analysis of treatment modalities in basal ganglia and thalamic germinoma. Pediatric Blood and Cancer, 2021, 68, e29172.	1.5	3

#	Article	IF	CITATIONS
91	RTHP-21. CHARACTERIZATION OF RADIATION THERAPY EFFECTS ON CEREBRAL VASCULATURE IN PEDIATRIC BRAIN TUMOR SURVIVORS. Neuro-Oncology, 2018, 20, vi229-vi229.	1.2	2
92	DIPG-76. PNOC-003: PRECISION MEDICINE TRIAL FOR CHILDREN WITH DIFFUSES INTRINSIC PONTINE GLIOMA: PRELIMINARY EXPERIENCE WITH MULTI-AGENT PERSONALIZED THERAPY RECOMMENDATIONS. Neuro-Oncology, 2018, 20, i64-i64.	1.2	2
93	Topographic correlates of driver mutations and endogenous gene expression in pediatric diffuse midline gliomas and hemispheric high-grade gliomas. Scientific Reports, 2021, 11, 14377.	3.3	2
94	Wee1 kinase inhibitor adavosertib with radiation in newly diagnosed diffuse intrinsic pontine glioma: A Children's Oncology Group phase I consortium study. Neuro-Oncology Advances, 2022, 4, .	0.7	2
95	An Integrated Analysis of Clinical, Genomic, and Imaging Features Reveals Predictors of Neurocognitive Outcomes in a Longitudinal Cohort of Pediatric Cancer Survivors, Enriched with CNS Tumors (Rad ART Pro). Frontiers in Oncology, 0, 12, .	2.8	2
96	DDIS-16. ONC201 IN COMBINATION WITH RADIATION EXHIBITS SYNERGISTIC EFFICACY IN HIGH GRADE GLIOMAS AND OTHER ADVANCED CANCERS. Neuro-Oncology, 2018, 20, vi72-vi72.	1.2	1
97	IMMU-18. TARGETING H3.3 K27M MUTATION AS A SHARED NEOANTIGEN IN HLA-A*0201+ PATIENTS WITH DIFFUSE MIDLINE GLIOMAS – DEVELOPMENT OF A NOVEL MASS CYTOMETRY-BASED MONITORING OF VACCINE-REACTIVE, EPITOPE-SPECIFIC CD8+ T CELL RESPONSES. Neuro-Oncology, 2019, 21, ii96-ii96.	1.2	1
98	Opportunities for the treatment of NF1-associated low-grade gliomas: how to decide on the best treatment options for patients?. Neuro-Oncology, 2020, 22, 1415-1416.	1.2	1
99	Introduction. Pediatric brain tumor. Neurosurgical Focus, 2020, 48, E1.	2.3	1
100	Evaluation of Pre–Hematopoietic Cell Transplantation (HCT) Brain MRI and Neurologic Complications of Pediatric Patients Undergoing HCT for Hematologic Malignancies. Journal of Pediatric Oncology Nursing, 2017, 34, 65-73.	1.5	0
101	GENE-43. LIQUID BIOPSY FOR MONITORING OF TUMOR RESPONSE IN CHILDREN WITH DIFFUSE MIDLINE GLIOMA. Neuro-Oncology, 2017, 19, vi101-vi102.	1.2	0
102	TBIO-29. PedcBioPortal, A CANCER DATA VISUALIZATION TOOL FOR INTEGRATIVE PEDIATRIC CANCER ANALYSES. Neuro-Oncology, 2018, 20, i186-i186.	1.2	0
103	NIMG-67. CLINICAL APPLICATIONS OF QUANTITATIVE THREE-DIMENSIONAL MRI ANALYSIS FOR PEDIATRIC EMBRYONAL BRAIN TUMORS. Neuro-Oncology, 2018, 20, vi191-vi191.	1.2	0
104	DIPG-56. PRECLINICAL STUDIES OF DIANHYDROGALACTITOL (VAL-083) IN DIPG, AS SINGLE AGENT OR AS A COMBINATION WITH RADIATION OR AZD1775. Neuro-Oncology, 2018, 20, i60-i60.	1.2	0
105	HGG-38. DEVELOPMENT AND COMPREHENSIVE CHARACTERIZATION AND UTILIZATION OF PRECLINICAL MODELS OF PEDIATRIC HIGH GRADE GLIOMAS. Neuro-Oncology, 2018, 20, i97-i97.	1.2	0
106	TBIO-27. GABRIELLA MILLER KIDS FIRST DATA RESOURCE CENTER ADVANCING GENETIC RESEARCH IN CHILDHOOD CANCER AND STRUCTURAL BIRTH DEFECTS THROUGH LARGE SCALE INTEGRATED DATA-DRIVEN DISCOVERY AND CLOUD-BASED PLATFORMS FOR COLLABORATIVE ANALYSIS. Neuro-Oncology, 2018, 20, i186-i186.	1.2	0
107	TBIO-28. DISEASEXPRESS, A CANCER DATA ANALYTICS AND VISUALIZATION TOOL FOR IDENTIFYING IMMUNOTHERAPEUTIC TARGETS IN PEDIATRIC BRAIN TUMORS AND OTHER CANCERS. Neuro-Oncology, 2018, 20, i186-i186.	1.2	0
108	EXTH-09. DIANHYDROGALACTITOL (VAL-083) HAS THE POTENTIAL TO OVERCOME MAJOR CHALLENGES IN THE TREATMENT OF DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG). Neuro-Oncology, 2018, 20, vi86-vi87.	1.2	0

#	ARTICLE	IF	CITATIONS
109	HGG-24. COMPREHENSIVE GENOMIC ANALYSIS OF PEDIATRIC GLIOMAS UNCOVERS NOVEL MUTATIONS IN HISTONE-ENCODING GENES. Neuro-Oncology, 2019, 21, ii91-ii92.	1.2	0
110	GENE-20. MULTI-GENE MUTATION PROFILING OF PEDIATRIC MIDLINE GLIOMAS USING PATIENT LIQUID BIOPSY. Neuro-Oncology, 2019, 21, ii85-ii85.	1.2	0
111	Response to Letter by Walker et al. Neuro-Oncology Practice, 2020, 7, 574-575.	1.6	0
112	Response to Karajannis et al Neuro-Oncology Practice, 2020, 7, 571-571.	1.6	0
113	EPCT-02. COMPARISON OF TARGETED AGENTS RECOMMENDED BY THE CNS-TAP TOOL TO THOSE SELECTED BY A TUMOR BOARD IN A MOLECULARLY-DRIVEN DIPG CLINICAL TRIAL. Neuro-Oncology, 2021, 23, i46-i46.	1.2	0
114	EMBR-03. PINEOBLASTOMA: A POOLED OUTCOME STUDY OF NORTH AMERICAN AND AUSTRALIAN THERAPEUTIC DATA. Neuro-Oncology, 2021, 23, i6-i6.	1.2	0
115	MODL-26. CHILDREN'S BRAIN TUMOR NETWORK: ACCELERATING RESEARCH THROUGH COLLABORATION A OPEN-SCIENCE. Neuro-Oncology, 2020, 22, iii416-iii416.	ND 1.2	0
116	GCT-23. MULTI-INSTITUTIONAL ANALYSIS OF TREATMENT MODALITIES IN BASAL GANGLIA AND THALAMIC GERMINOMA. Neuro-Oncology, 2020, 22, iii332-iii332.	1.2	0
117	Neurologic complications in the treatment of childhood malignancies. , 2022, , 433-462.		0
118	DIPG-07. Preclinical and case study results underpinning the phase II clinical trial testing the combination of ONC201 and paxalisib for the treatment of patients with diffuse midline glioma (NCT05009992). Neuro-Oncology, 2022, 24, i18-i19.	1.2	0
119	RARE-13. Clinical management and functional and survival outcomes in pediatric craniopharyngioma, a patient and family perspective. Neuro-Oncology, 2022, 24, i12-i12.	1.2	0
120	LGC-52. Volumetry-based response characterization of recurrent pediatric low-grade gliomas in PNOC clinical Neuro-oncology trials. Neuro-Oncology, 2022, 24, i100-i100.	1.2	0
121	DIPG-31. Prognostic and predictive biomarkers of response in children and young adults with H3K27M-altered diffuse intrinsic pontine glioma: results from a multi-center, interventional clinical trial (PNOC003). Neuro-Oncology, 2022, 24, i25-i25.	1.2	0
122	NURS-02. Incorporating Nurses and Advanced Practice Providers into Clinical Trial Consortiums; results of a multi-institutional survey from the Pacific Pediatric Neuro-Oncology Consortium (PNOC). Neuro-Oncology, 2022, 24, i146-i146.	1.2	0
123	RARE-17. Multi-institutional craniopharyngioma cohort highlights need for more comprehensive data collection on comorbidities and quality of life. Neuro-Oncology, 2022, 24, i13-i13.	1.2	0
124	EPCT-08. Disease-specific working groups within the Pacific Pediatric Neuro-Oncology Consortium (PNOC) and Children's Brain Tumor Network (CBTN) facilitate multi-disciplinary collaboration and translation of innovative strategies in pediatric neuro-oncology. Neuro-Oncology, 2022, 24, i37-i37.	1.2	0
125	DIPG-47. TSO500ctDNA sequencing reveals oncogenic mutations and copy number variations in the liquid biome of children with diffuse midline glioma. Neuro-Oncology, 2022, 24, i29-i29.	1.2	0