Andrea Pitzschke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4048059/publications.pdf Version: 2024-02-01

ANDREA DITZSCHKE

#	Article	IF	CITATIONS
1	Emerging MAP kinase pathways in plant stress signalling. Trends in Plant Science, 2005, 10, 339-346.	8.8	617
2	MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology, 2009, 12, 421-426.	7.1	612
3	Reactive Oxygen Species Signaling in Plants. Antioxidants and Redox Signaling, 2006, 8, 1757-1764.	5.4	300
4	Seven Lotus japonicus Genes Required for Transcriptional Reprogramming of the Root during Fungal and Bacterial Symbiosis. Plant Cell, 2005, 17, 2217-2229.	6.6	293
5	Trojan Horse Strategy in <i>Agrobacterium</i> Transformation: Abusing MAPK Defense Signaling. Science, 2007, 318, 453-456.	12.6	251
6	A Major Role of the MEKK1–MKK1/2–MPK4 Pathway in ROS Signalling. Molecular Plant, 2009, 2, 120-137.	8.3	250
7	The <i>Arabidopsis</i> Mitogen-Activated Protein Kinase Kinase MKK3 Is Upstream of Group C Mitogen-Activated Protein Kinases and Participates in Pathogen Signaling. Plant Cell, 2007, 19, 3266-3279.	6.6	234
8	Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato - amplification in wound signalling. Plant Journal, 2003, 33, 577-589.	5.7	226
9	New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO Journal, 2010, 29, 1021-1032.	7.8	216
10	Mitogen-Activated Protein Kinases and Reactive Oxygen Species Signaling in Plants. Plant Physiology, 2006, 141, 351-356.	4.8	199
11	Brassinosteroid-regulated GSK3/Shaggy-like Kinases Phosphorylate Mitogen-activated Protein (MAP) Kinase Kinases, Which Control Stomata Development in Arabidopsis thaliana. Journal of Biological Chemistry, 2013, 288, 7519-7527.	3.4	152
12	VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18414-18419.	7.1	128
13	Disentangling the Complexity of Mitogen-Activated Protein Kinases and Reactive Oxygen Species Signaling. Plant Physiology, 2009, 149, 606-615.	4.8	120
14	Salt Stress in Arabidopsis: Lipid Transfer Protein AZI1 and Its Control by Mitogen-Activated Protein Kinase MPK3. Molecular Plant, 2014, 7, 722-738.	8.3	105
15	Modes of MAPK substrate recognition and control. Trends in Plant Science, 2015, 20, 49-55.	8.8	92
16	Agrobacterium infection and plant defense—transformation success hangs by a thread. Frontiers in Plant Science, 2013, 4, 519.	3.6	85
17	Dominant Repression by Arabidopsis Transcription Factor MYB44 Causes Oxidative Damage and Hypersensitivity to Abiotic Stress. International Journal of Molecular Sciences, 2014, 15, 2517-2537.	4.1	84
18	Developmental Peculiarities and Seed-Borne Endophytes in Quinoa: Omnipresent, Robust Bacilli Contribute to Plant Fitness. Frontiers in Microbiology, 2016, 7, 2.	3.5	84

ANDREA PITZSCHKE

#	ARTICLE	IF	CITATIONS
19	Tight Interconnection and Multi-Level Control of Arabidopsis MYB44 in MAPK Cascade Signalling. PLoS ONE, 2013, 8, e57547.	2.5	83
20	Proteases in plant root symbiosis. Phytochemistry, 2007, 68, 111-121.	2.9	50
21	Plants make galls to accommodate foreigners: some are friends, most are foes. New Phytologist, 2020, 225, 1852-1872.	7.3	42
22	Poinsettia protoplasts - a simple, robust and efficient system for transient gene expression studies. Plant Methods, 2012, 8, 14.	4.3	37
23	Molecular dynamics in germinating, endophyte-colonized quinoa seeds. Plant and Soil, 2018, 422, 135-154.	3.7	18
24	Bioinformatic and Systems Biology Tools to Generate Testable Models of Signaling Pathways and Their Targets. Plant Physiology, 2010, 152, 460-469.	4.8	17
25	Antioxidative responses during germination in quinoa grown in vitamin Bâ€rich medium. Food Science and Nutrition, 2015, 3, 242-251.	3.4	14
26	Post-Translational Modification and Secretion of Azelaic Acid Induced 1 (AZI1), a Hybrid Proline-Rich Protein from Arabidopsis. International Journal of Molecular Sciences, 2016, 17, 85.	4.1	14
27	Mechanism of MAPK-targeted gene expression unraveled in plants. Cell Cycle, 2010, 9, 18-19.	2.6	6
28	From Bench to Barn: Plant Model Research and its Applications in Agriculture. Advancements in Genetic Engineering, 2013, 02, .	0.1	6
29	Mitogen-activated protein kinase-regulated AZI1 – an attractive candidate for genetic engineering. Plant Signaling and Behavior, 2014, 9, e27764.	2.4	5
30	Tropaeolum Tops Tobacco – Simple and Efficient Transgene Expression in the Order Brassicales. PLoS ONE, 2013, 8, e73355.	2.5	5