
Diego P VÃjzquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4047318/publications.pdf Version: 2024-02-01

DIECO P VÃ:ZOUEZ

#	Article	IF	CITATIONS
1	Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters, 2007, 10, 299-314.	3.0	1,096
2	A metaâ€analysis of bees' responses to anthropogenic disturbance. Ecology, 2009, 90, 2068-2076.	1.5	739
3	Biotic interactions and plant invasions. Ecology Letters, 2006, 9, 726-740.	3.0	649
4	Species abundance and asymmetric interaction strength in ecological networks. Oikos, 2007, 116, 1120-1127.	1.2	497
5	Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecology Letters, 2005, 8, 1088-1094.	3.0	467
6	Uniting pattern and process in plant–animal mutualistic networks: a review. Annals of Botany, 2009, 103, 1445-1457.	1.4	464
7	WHAT DO INTERACTION NETWORK METRICS TELL US ABOUT SPECIALIZATION AND BIOLOGICAL TRAITS. Ecology, 2008, 89, 3387-3399.	1.5	374
8	ASYMMETRIC SPECIALIZATION: A PERVASIVE FEATURE OF PLANT–POLLINATOR INTERACTIONS. Ecology, 2004, 85, 1251-1257.	1.5	343
9	Evaluating multiple determinants of the structure of plant–animal mutualistic networks. Ecology, 2009, 90, 2039-2046.	1.5	326
10	Evaluating sampling completeness in a desert plant–pollinator network. Journal of Animal Ecology, 2012, 81, 190-200.	1.3	268
11	The dimensionality of ecological networks. Ecology Letters, 2013, 16, 577-583.	3.0	246
12	Ecological Specialization and Susceptibility to Disturbance: Conjectures and Refutations. American Naturalist, 2002, 159, 606-623.	1.0	228
13	DIRECT AND INTERACTIVE EFFECTS OF ENEMIES AND MUTUALISTS ON PLANT PERFORMANCE: A META-ANALYSIS. Ecology, 2007, 88, 1021-1029.	1.5	208
14	The Latitudinal Gradient in Niche Breadth: Concepts and Evidence. American Naturalist, 2004, 164, E1-E19.	1.0	207
15	Ecological and evolutionary impacts of changing climatic variability. Biological Reviews, 2017, 92, 22-42.	4.7	201
16	Species abundance and the distribution of specialization in host-parasite interaction networks. Journal of Animal Ecology, 2005, 74, 946-955.	1.3	199
17	NULL MODEL ANALYSES OF SPECIALIZATION IN PLANT–POLLINATOR INTERACTIONS. Ecology, 2003, 84, 2493-2501.	1.5	186
18	Multiple Effects of Introduced Mammalian Herbivores in a Temperate Forest. Biological Invasions, 2002, 4, 175-191.	1.2	131

Diego P VÃizquez

#	Article	IF	CITATIONS
19	Degree distribution in plant-animal mutualistic networks: forbidden links or random interactions?. Oikos, 2005, 108, 421-426.	1.2	113
20	Changes in interaction biodiversity induced by an introduced ungulate. Ecology Letters, 2003, 6, 1077-1083.	3.0	104
21	INDIRECT EFFECTS OF AN INTRODUCED UNGULATE ON POLLINATION AND PLANT REPRODUCTION. Ecological Monographs, 2004, 74, 281-308.	2.4	97
22	When mutualism goes bad: densityâ€dependent impacts of introduced bees on plant reproduction. New Phytologist, 2014, 204, 322-328.	3.5	95
23	Historia natural y conservación de los mutualismos planta-animal del bosque templado de Sudamérica austral. Revista Chilena De Historia Natural, 2002, 75, 79.	0.5	93
24	Flowering phenologies of hummingbird plants from the temperate forest of southern South America: is there evidence of competitive displacement?. Ecography, 2006, 29, 357-366.	2.1	89
25	Benefit and cost curves for typical pollination mutualisms. Ecology, 2010, 91, 1276-1285.	1.5	89
26	Revisiting the Potential Conservation Value of Nonâ€Native Species. Conservation Biology, 2012, 26, 1153-1155.	2.4	81
27	Abundance and generalisation in mutualistic networks: solvingÂthe chickenâ€andâ€egg dilemma. Ecology Letters, 2016, 19, 4-11.	3.0	80
28	The strength of plant–pollinator interactions. Ecology, 2012, 93, 719-725.	1.5	75
29	Interaction frequency, network position, and the temporal persistence of interactions in a plant–pollinator network. Ecology, 2018, 99, 21-28.	1.5	74
30	Rareness and specialization in plant–pollinator networks. Ecology, 2011, 92, 19-25.	1.5	73
31	Biodiversity and species interactions: extending Lotka-Volterra community theory. Ecology Letters, 2003, 6, 944-952.	3.0	72
32	A conceptual framework for studying the strength of plant–animal mutualistic interactions. Ecology Letters, 2015, 18, 385-400.	3.0	67
33	Temporal scaleâ€dependence of plant–pollinator networks. Oikos, 2020, 129, 1289-1302.	1.2	66
34	Seeing through the static: the temporal dimension of plant–animal mutualistic interactions. Ecology Letters, 2021, 24, 149-161.	3.0	66
35	The macroecology of marine cleaning mutualisms. Journal of Animal Ecology, 2007, 76, 105-111.	1.3	61
36	Species abundance and asymmetric interaction strength in ecological networks. Oikos, 2007, 116, 1120-1127.	1.2	58

#	Article	IF	CITATIONS
37	Determinants of the microstructure of plant–pollinator networks. Ecology, 2014, 95, 3314-3324.	1.5	58
38	Trait matching and phenological overlap increase the spatioâ€ŧemporal stability and functionality of plant–pollinator interactions. Ecology Letters, 2020, 23, 1107-1116.	3.0	58
39	Species traits and network structure predict the success and impacts of pollinator invasions. Nature Communications, 2018, 9, 2153.	5.8	57
40	The effect of space in plant–animal mutualistic networks: insights from a simulation study. Oikos, 2008, 117, 1362-1370.	1.2	56
41	Biodiversity conservation: Does phylogeny matter?. Current Biology, 1998, 8, R379-R381.	1.8	44
42	Landâ€use intensity indirectly affects ecosystem services mainly through plant functional identity in a temperate forest. Functional Ecology, 2018, 32, 1390-1399.	1.7	44
43	Exploring the relationship between nichie breadth and invasion success. , 2006, , 307-322.		40
44	Fire influences the structure of plant–bee networks. Journal of Animal Ecology, 2017, 86, 1372-1379.	1.3	38
45	Core–periphery dynamics in a plant–pollinator network. Journal of Animal Ecology, 2020, 89, 1670-1677.	1.3	36
46	The species–energy theory: a role for energy variability. Ecography, 2010, 33, 942-948.	2.1	35
47	Ecological network complexity scales with area. Nature Ecology and Evolution, 2022, 6, 307-314.	3.4	35
48	Dung beetles and nutrient cycling in a dryland environment. Catena, 2019, 179, 66-73.	2.2	30
49	Towards an applied metaecology. Perspectives in Ecology and Conservation, 2019, 17, 172-181.	1.0	30
50	Phenology determines the robustness of plant–pollinator networks. Scientific Reports, 2018, 8, 14873.	1.6	25
51	The calculus of biodiversity: integrating phylogeny and conservation. Trends in Ecology and Evolution, 2000, 15, 92-94.	4.2	24
52	Bats and hawkmoths form mixed modules with flowering plants in a nocturnal interaction network. Biotropica, 2021, 53, 596-607.	0.8	24
53	The Importance of Pollinator Generalization and Abundance for the Reproductive Success of a Generalist Plant. PLoS ONE, 2013, 8, e75482.	1.1	22
54	Strength of niche processes for species interactions is lower for generalists and exotic species. Journal of Animal Ecology, 2020, 89, 2145-2155.	1.3	21

#	Article	IF	CITATIONS
55	Frequency-Dependent Selection Predicts Patterns of Radiations and Biodiversity. PLoS Computational Biology, 2010, 6, e1000892.	1.5	20
56	Habitat protection, cattle grazing and densityâ€dependent reproduction in a desert tree. Austral Ecology, 2009, 34, 901-907.	0.7	19
57	Morphological response of a cactus to cement dust pollution. Ecotoxicology and Environmental Safety, 2018, 148, 571-577.	2.9	19
58	Ecological consequences of dead wood extraction in an arid ecosystem. Basic and Applied Ecology, 2011, 12, 722-732.	1.2	18
59	Pollinator declines and the stability of plant–pollinator networks. Ecosphere, 2020, 11, e03069.	1.0	17
60	Inferring coevolution in a plant–pollinator network. Oikos, 2019, 128, 775-789.	1.2	16
61	Drivers of the structure of plant–hummingbird interaction networks at multiple temporal scales. Oecologia, 2020, 193, 913-924.	0.9	16
62	Phylogenetic tree shape and the structure of mutualistic networks. Journal of Ecology, 2014, 102, 1234-1243.	1.9	14
63	Exotic plants promote pollination niche overlap in an agroecosystem. Agriculture, Ecosystems and Environment, 2017, 239, 304-309.	2.5	14
64	No Defensive Role of Ants throughout a Broad Latitudinal and Elevational Range of a Cactus. Biotropica, 2015, 47, 347-354.	0.8	13
65	Plant–pollinator interactions between generalists persist over time and space. Ecology, 2021, 102, e03359.	1.5	13
66	The diversity–stability relationship in floral production. Oikos, 2014, 123, 1137-1143.	1.2	12
67	Landscape connectivity explains interaction network patterns at multiple scales. Ecology, 2019, 100, e02883.	1.5	12
68	Soil disturbance, vegetation cover and the establishment of the exotic shrub Pyracantha coccinea in southern France. Biological Invasions, 2010, 12, 1023-1029.	1.2	10
69	Large herbivores facilitate a dominant grassland forb via multiple indirect effects. Ecology, 2022, 103, e3635.	1.5	10
70	Habitat specificity can blur the predictions of species–energy theory: A case study of tenebrionid beetles adapted to aridity. Journal of Arid Environments, 2011, 75, 703-710.	1.2	9
71	Demography and population growth rate of the tree Prosopis flexuosa with contrasting grazing regimes in the Central Monte Desert. Forest Ecology and Management, 2016, 369, 184-190.	1.4	9
72	Potential contribution to the invasion process of different reproductive strategies of two invasive roses. Biological Invasions, 2017, 19, 615-623.	1.2	9

#	Article	IF	CITATIONS
73	Within-day dynamics of plant–pollinator networks are dominated by early flower closure: an experimental test of network plasticity. Oecologia, 2021, 196, 781-794.	0.9	9
74	Quantitative Prediction of Interactions in Bipartite Networks Based on Traits, Abundances, and Phylogeny. American Naturalist, 2022, 199, 841-854.	1.0	8
75	Flower diversity and bee reproduction in an arid ecosystem. PeerJ, 2016, 4, e2250.	0.9	7
76	The disruption of a keystone interaction erodes pollination and seed dispersal networks. Ecology, 2022, 103, e03547.	1.5	7
77	Invasive bumble bee disrupts a pollination mutualism over space and time. Biological Invasions, 2022, 24, 1439-1452.	1.2	7
78	Network science: Applications for sustainable agroecosystems and food security. Perspectives in Ecology and Conservation, 2022, 20, 79-90.	1.0	7
79	Nesting ecology of sympatric species of wool carder bees (Hymenoptera: Megachilidae:) Tj ETQq1 1 0.784314 r	gBT/Overl 0.7	lock 10 Tf 50 3
80	Similarities and differences in the realized niche of two allopatric populations of a solitary bee under environmental variability. Apidologie, 2020, 51, 439-454.	0.9	6
81	Ecology and nesting biology of the wood-boring bee Trichothurgus laticeps (Hymenoptera:) Tj ETQq1 1 0.78431	.4 rgBT /O	verlock 10 Tf
82	Experimental reduction of plant abundance changes interaction frequency of a triâ€ŧrophic microâ€food web: contrasting responses of generalists and specialists. Journal of Ecology, 2020, 108, 415-423.	1.9	5
83	No such thing as a free lunch: interaction costs and the structure and stability of mutualistic networks. Oikos, 2020, 129, 503-511.	1.2	5
84	Robustness of a metaâ€network to alternative habitat loss scenarios. Oikos, 2021, 130, 133-142.	1.2	5
85	Flexible diets enable pollinators to cope with changes in plant community composition. Journal of Ecology, 2022, 110, 1913-1927.	1.9	5
86	Analysis of an invasion in the community context: a case study about differences and similarities between native and non-native shrubs. Plant Ecology, 2020, 221, 83-89.	0.7	4
87	Modeling habitat suitability and spread dynamics of two invasive rose species in protected areas of Mendoza, Argentina. Ecological Complexity, 2020, 44, 100868.	1.4	4
88	A keystone mutualism promotes resistance to invasion. Journal of Animal Ecology, 2022, 91, 74-85.	1.3	4
89	Managed honeybee hives and the diversity of wild bees in a dryland nature reserve. Apidologie, 2021, 52, 991-1001.	0.9	4
90	Abundance and phenology drive plant–pollinator network responses to restoration in the Southern Atlantic rainforest in Brazil. Restoration Ecology, 2022, 30, .	1.4	4

#	Article	IF	CITATIONS
91	Hiking and livestock favor non-native plants in the high Andes. Biological Invasions, 0, , .	1.2	4
92	Introduced deer and the pollination and reproduction of an animal-pollinated herb. Botany, 2010, 88, 110-118.	0.5	3
93	Plant–plant co-occurrences under a complex land-use gradient in a temperate forest. Oecologia, 2021, 196, 815-824.	0.9	2