
Marie B Demay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/404659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vitamin D and Human Health: Lessons from Vitamin D Receptor Null Mice. Endocrine Reviews, 2008, 29, 726-776.	20.1	1,461
2	Normalization of Mineral Ion Homeostasis by Dietary Means Prevents Hyperparathyroidism, Rickets, and Osteomalacia, But Not Alopecia in Vitamin D Receptor-Ablated Mice ¹ . Endocrinology, 1998, 139, 4391-4396.	2.8	474
3	Rescue of the Skeletal Phenotype of Vitamin D Receptor-Ablated Mice in the Setting of Normal Mineral Ion Homeostasis: Formal Histomorphometric and Biomechanical Analyses1. Endocrinology, 1999, 140, 4982-4987.	2.8	468
4	Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF ^{high} neutrophils. Science, 2017, 358, .	12.6	270
5	Deficient Mineralization of Intramembranous Bone in Vitamin D-24-Hydroxylase-Ablated Mice Is Due to Elevated 1,25-Dihydroxyvitamin D and Not to the Absence of 24,25-Dihydroxyvitamin D*. Endocrinology, 2000, 141, 2658-2666.	2.8	257
6	Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9637-9642.	7.1	222
7	Two tissue-resident progenitor lineages drive distinct phenotypes of heterotopic ossification. Science Translational Medicine, 2016, 8, 366ra163.	12.4	168
8	Vitamin D receptor is essential for normal keratinocyte stem cell function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9428-9433.	7.1	137
9	Ligand-Independent Actions of the Vitamin D Receptor Maintain Hair Follicle Homeostasis. Molecular Endocrinology, 2005, 19, 855-862.	3.7	132
10	Normalization of Mineral Ion Homeostasis by Dietary Means Prevents Hyperparathyroidism, Rickets, and Osteomalacia, But Not Alopecia in Vitamin D Receptor-Ablated Mice. Endocrinology, 1998, 139, 4391-4396.	2.8	127
11	Metabolic and cellular analysis of alopecia in vitamin D receptor knockout mice. Journal of Clinical Investigation, 2001, 107, 961-966.	8.2	122
12	Rescue of the Skeletal Phenotype of Vitamin D Receptor-Ablated Mice in the Setting of Normal Mineral Ion Homeostasis: Formal Histomorphometric and Biomechanical Analyses. Endocrinology, 1999, 140, 4982-4987.	2.8	121
13	Targeting Expression of the Human Vitamin D Receptor to the Keratinocytes of Vitamin D Receptor Null Mice Prevents Alopecia. Endocrinology, 2001, 142, 5386-5389.	2.8	103
14	Evaluation of Keratinocyte Proliferation and Differentiation in Vitamin D Receptor Knockout Mice*. Endocrinology, 2000, 141, 2043-2049.	2.8	101
15	Mechanism of Vitamin D Receptor Action. Annals of the New York Academy of Sciences, 2006, 1068, 204-213.	3.8	96
16	Rickets in VDR Null Mice Is Secondary to Decreased Apoptosis of Hypertrophic Chondrocytes. Endocrinology, 2002, 143, 3691-3691.	2.8	92
17	VITAMIN D DEFICIENCY AND DISORDERS OF VITAMIN D METABOLISM. Endocrinology and Metabolism Clinics of North America, 2000, 29, 611-627.	3.2	91
18	Analysis of Vitamin D-Dependent Calcium-Binding Protein Messenger Ribonucleic Acid Expression in Mice Lacking the Vitamin D Receptor ¹ . Endocrinology, 1998, 139, 847-851.	2.8	84

MARIE B DEMAY

#	Article	IF	CITATIONS
19	VDR-mediated inhibition of DKK1 and SFRP2 suppresses adipogenic differentiation of murine bone marrow stromal cells. Journal of Cellular Biochemistry, 2007, 101, 80-88.	2.6	80
20	Cloning and Characterization of a Novel WD-40 Repeat Protein That Dramatically Accelerates Osteoblastic Differentiation. Journal of Biological Chemistry, 2001, 276, 46515-46522.	3.4	74
21	Osteoblasts lacking the vitamin D receptor display enhanced osteogenic potential in vitro. Journal of Cellular Biochemistry, 2005, 94, 81-87.	2.6	65
22	Impaired bone development and increased mesenchymal progenitor cells in calvaria of RB1-/- mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18402-18407.	7.1	63
23	Vitamin D regulates osteocyte survival and perilacunar remodeling in human and murine bone. Bone, 2017, 103, 78-87.	2.9	60
24	Phosphate-induced Apoptosis of Hypertrophic Chondrocytes Is Associated with a Decrease in Mitochondrial Membrane Potential and Is Dependent upon Erk1/2 Phosphorylation. Journal of Biological Chemistry, 2010, 285, 18270-18275.	3.4	57
25	1,25-Dihydroxyvitamin D Alone Improves Skeletal Growth, Microarchitecture, and Strength in a Murine Model of XLH, Despite Enhanced FGF23 Expression. Journal of Bone and Mineral Research, 2016, 31, 929-939.	2.8	56
26	The biology and pathology of vitamin D control in bone. Journal of Cellular Biochemistry, 2010, 111, 7-13.	2.6	55
27	Cloning and Characterization of the Vitamin D Receptor from Xenopus laevis*. Endocrinology, 1997, 138, 2347-2353.	2.8	54
28	Nucleotide sequence of cloned cDNAs encoding chicken preproparathyroid hormone. Journal of Bone and Mineral Research, 1988, 3, 689-698.	2.8	53
29	Wdr5 Is Essential for Osteoblast Differentiation. Journal of Biological Chemistry, 2008, 283, 7361-7367.	3.4	51
30	The Vitamin D Receptor Is Required for Activation of cWnt and Hedgehog Signaling in Keratinocytes. Molecular Endocrinology, 2014, 28, 1698-1706.	3.7	48
31	Muscle: A Nontraditional 1,25-Dihydroxyvitamin D Target Tissue Exhibiting Classic Hormone-Dependent Vitamin D Receptor Actions. Endocrinology, 2003, 144, 5135-5137.	2.8	44
32	Increased Circulating FGF23 Does Not Lead to Cardiac Hypertrophy in the Male Hyp Mouse Model of XLH. Endocrinology, 2018, 159, 2165-2172.	2.8	44
33	Role of the vitamin D receptor in hair follicle biology. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 344-346.	2.5	43
34	Hormonal Regulation of Osteocyte Perilacunar and Canalicular Remodeling in the Hyp Mouse Model of X-Linked Hypophosphatemia. Journal of Bone and Mineral Research, 2018, 33, 499-509.	2.8	43
35	Wdr5, a WD-40 protein, regulates osteoblast differentiation during embryonic bone development. Developmental Biology, 2006, 295, 498-506.	2.0	41
36	Lymphoid Enhancer-binding Factor-1 (LEF1) Interacts with the DNA-binding Domain of the Vitamin D Receptor. Journal of Biological Chemistry, 2011, 286, 18444-18451.	3.4	38

MARIE B DEMAY

#	Article	IF	CITATIONS
37	Calcium and Vitamin D: What Is Known About the Effects on Growing Bone. Pediatrics, 2007, 119, S141-S144.	2.1	37
38	The hair cycle and Vitamin D receptor. Archives of Biochemistry and Biophysics, 2012, 523, 19-21.	3.0	37
39	The Receptor-Dependent Actions of 1,25-Dihydroxyvitamin D Are Required for Normal Growth Plate Maturation in NPt2a Knockout Mice. Endocrinology, 2010, 151, 4607-4612.	2.8	34
40	Physiological Insights from the Vitamin D Receptor Knockout Mouse. Calcified Tissue International, 2013, 92, 99-105.	3.1	31
41	The Vitamin D Receptor Regulates Tissue Resident Macrophage Response to Injury. Endocrinology, 2016, 157, 4066-4075.	2.8	28
42	Targeting Expression of the Human Vitamin D Receptor to the Keratinocytes of Vitamin D Receptor Null Mice Prevents Alopecia. Endocrinology, 2001, 142, 5386-5386.	2.8	28
43	Fibromodulin is expressed by both chondrocytes and osteoblasts during fetal bone development. Journal of Cellular Biochemistry, 2001, 82, 46-57.	2.6	27
44	BIG-3, a Novel WD-40 Repeat Protein, Is Expressed in the Developing Growth Plate and Accelerates Chondrocyte Differentiationin Vitro. Endocrinology, 2004, 145, 1050-1054.	2.8	27
45	The vitamin D receptor, the skin and stem cells. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 314-316.	2.5	27
46	Acute Phosphate Restriction Impairs Bone Formation and Increases Marrow Adipose Tissue in Growing Mice. Journal of Bone and Mineral Research, 2016, 31, 2204-2214.	2.8	26
47	Acute phosphate restriction leads to impaired fracture healing and resistance to BMP-2. Journal of Bone and Mineral Research, 2010, 25, 724-733.	2.8	25
48	Evaluation of Keratinocyte Proliferation and Differentiation in Vitamin D Receptor Knockout Mice. Endocrinology, 2000, 141, 2043-2049.	2.8	25
49	Phosphate Interacts With PTHrP to Regulate Endochondral Bone Formation. Endocrinology, 2014, 155, 3750-3756.	2.8	24
50	Cloning and Characterization of the Vitamin D Receptor from Xenopus laevis. Endocrinology, 1997, 138, 2347-2353.	2.8	24
51	Effect of Bisphosphonates on the Rapidly Growing Male Murine Skeleton. Endocrinology, 2014, 155, 1188-1196.	2.8	22
52	Identification of an Osteoblastic Silencer Element in the First Intron of the Rat Osteocalcin Geneâ€. Biochemistry, 1996, 35, 11005-11011.	2.5	20
53	Raf Kinases Are Essential for Phosphate Induction of ERK1/2 Phosphorylation in Hypertrophic Chondrocytes and Normal Endochondral Bone Development. Journal of Biological Chemistry, 2017, 292, 3164-3171.	3.4	17
54	Molecular analysis of enthesopathy in a mouse model of hypophosphatemic rickets. Development (Cambridge), 2018, 145, .	2.5	16

MARIE B DEMAY

#	Article	IF	CITATIONS
55	BMP-2 induces the expression of activin ?A and follistatin in vitro. Journal of Cellular Biochemistry, 2000, 79, 80-88.	2.6	15
56	Case 16-2008. New England Journal of Medicine, 2008, 358, 2266-2274.	27.0	15
57	C-Raf promotes Angiogenesis during Normal Growth Plate Maturation. Development (Cambridge), 2015, 143, 348-55.	2.5	14
58	Phosphate regulates embryonic endochondral bone development. Journal of Cellular Biochemistry, 2009, 108, 668-674.	2.6	13
59	Perichondrial expression of Wdr5 regulates chondrocyte proliferation and differentiation. Developmental Biology, 2009, 329, 36-43.	2.0	12
60	Absence of vitamin D receptor (VDR)â€mediated PPARγ suppression causes alopecia in VDRâ€null mice. FASEB Journal, 2017, 31, 1059-1066.	0.5	12
61	Bisphosphonate Withdrawal: Effects on Bone Formation and Bone Resorption in Maturing Male Mice. Journal of Bone and Mineral Research, 2017, 32, 814-820.	2.8	11
62	1,25-Dihydroxyvitamin D Maintains Brush Border Membrane NaPi2a and Attenuates Phosphaturia in Hyp Mice. Endocrinology, 2019, 160, 2204-2214.	2.8	11
63	Phosphate restriction impairs mTORC1 signaling leading to increased bone marrow adipose tissue and decreased bone in growing mice. Journal of Bone and Mineral Research, 2020, 36, 1510-1520.	2.8	10
64	An Inverse Agonist Ligand of the PTH Receptor Partially Rescues Skeletal Defects in a Mouse Model of Jansen's Metaphyseal Chondrodysplasia. Journal of Bone and Mineral Research, 2020, 35, 540-549.	2.8	8
65	Conductive Hearing Loss in the <i>Hyp</i> Mouse Model of X-Linked Hypophosphatemia Is Accompanied by Hypomineralization of the Auditory Ossicles. Journal of Bone and Mineral Research, 2020, 36, 2317-2328.	2.8	8
66	Loss of Intestinal Alkaline Phosphatase Leads to Distinct Chronic Changes in Bone Phenotype. Journal of Surgical Research, 2018, 232, 325-331.	1.6	7
67	Adipose-specific VDR Deletion Leads to Hepatic Steatosis in Female Mice Fed a Low-Fat Diet. Endocrinology, 2022, 163, .	2.8	7
68	The good and the bad of vitamin D inactivation. Journal of Clinical Investigation, 2018, 128, 3736-3738.	8.2	6
69	The effects of BIG-3 on osteoblast differentiation are not dependent upon endogenously produced BMPs. Experimental Cell Research, 2005, 304, 287-292.	2.6	4
70	Characterization of an enhancer required for 1,25-dihydroxyvitamin D3-dependent transactivation of the rat osteocalcin gene. Journal of Cellular Biochemistry, 1999, 73, 400-407.	2.6	3
71	Highlights from the 18th workshop on vitamin D, Delft, The Netherlands, April 21–24, 2015. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 1-3.	2.5	3
72	Highlights from the 19 th Workshop on Vitamin D in Boston, March 29–31, 2016. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 1-4.	2.5	1

#	Article	IF	CITATIONS
73	Prevention of Hypomineralization In Auditory Ossicles of Vitamin D Receptor (Vdr) Deficient Mice. Frontiers in Endocrinology, 0, 13, .	3.5	1
74	Intravital imaging of the lacunar-canalicular network in mouse calvaria using third harmonic generation microscopy. , 2017, , .		0
75	The Role of Vitamin D and Its Receptor in Hair Follicle Biology. , 2018, , 521-526.		0