Hongchun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4045754/publications.pdf

Version: 2024-02-01

516710 526287 29 946 16 27 h-index citations g-index papers 31 31 31 1216 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Helical structure motifs made searchable for functional peptide design. Nature Communications, 2022, 13, 102.	12.8	10
2	Precise druggability of the PTH type 1 receptor. Nature Chemical Biology, 2022, 18, 272-280.	8.0	11
3	Adaptability and specificity: how do proteins balance opposing needs to achieve function?. Current Opinion in Structural Biology, 2021, 67, 25-32.	5.7	11
4	An easily available lysosomal-targeted ratiometric fluorescent probe with aggregation induced emission characteristics for hydrogen polysulfide visualization in acute ulcerative colitis. Materials Chemistry Frontiers, 2021, 5, 7638-7644.	5.9	7
5	Network-Based Target Prioritization and Drug Candidate Identification for Multiple Sclerosis: From Analyzing "Omics Data―to Druggability Simulations. ACS Chemical Neuroscience, 2021, 12, 917-929.	3.5	5
6	<i>ProDy</i> 2.0: increased scale and scope after 10 years of protein dynamics modelling with Python. Bioinformatics, 2021, 37, 3657-3659.	4.1	93
7	Editorial: Understanding Protein Dynamics, Binding and Allostery for Drug Design. Frontiers in Molecular Biosciences, 2021, 8, 681364.	3.5	2
8	Pharmmaker: Pharmacophore modeling and hit identification based on druggability simulations. Protein Science, 2020, 29, 76-86.	7.6	19
9	Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior. Current Opinion in Structural Biology, 2020, 62, 14-21.	5.7	85
10	Pharmacologic Suppression of B7-H4 Glycosylation Restores Antitumor Immunity in Immune-Cold Breast Cancers. Cancer Discovery, 2020, 10, 1872-1893.	9.4	66
11	Modulation of Toroidal Proteins Dynamics in Favor of Functional Mechanisms upon Ligand Binding. Biophysical Journal, 2020, 118, 1782-1794.	0.5	9
12	Coenzyme Coupling Boosts Charge Transport through Single Bioactive Enzyme Junctions. IScience, 2020, 23, 101001.	4.1	16
13	QuartataWeb: Integrated Chemical–Protein-Pathway Mapping for Polypharmacology and Chemogenomics. Bioinformatics, 2020, 36, 3935-3937.	4.1	23
14	A novel strategy to block mitotic progression for targeted therapy. EBioMedicine, 2019, 49, 40-54.	6.1	33
15	Shared Signature Dynamics Tempered by Local Fluctuations Enables Fold Adaptability and Specificity. Molecular Biology and Evolution, 2019, 36, 2053-2068.	8.9	45
16	Quantitative Systems Pharmacological Analysis of Drugs of Abuse Reveals the Pleiotropy of Their Targets and the Effector Role of mTORC1. Frontiers in Pharmacology, 2019, 10, 191.	3.5	10
17	Characterization of Differential Dynamics, Specificity, and Allostery of Lipoxygenase Family Members. Journal of Chemical Information and Modeling, 2019, 59, 2496-2508.	5.4	34
18	Dynamic Modulation of Binding as a Mechanism for Regulating Interferon Signaling. Biophysical Journal, 2018, 114, 232a.	0.5	0

#	Article	lF	CITATION
19	Dynamic Modulation of Binding Affinity as a Mechanism for Regulating Interferon Signaling. Journal of Molecular Biology, 2017, 429, 2571-2589.	4.2	14
20	Connecting Neuronal Cell Protective Pathways and Drug Combinations in a Huntington's Disease Model through the Application of Quantitative Systems Pharmacology. Scientific Reports, 2017, 7, 17803.	3.3	22
21	DynOmics: dynamics of structural proteome and beyond. Nucleic Acids Research, 2017, 45, W374-W380.	14.5	135
22	Blocking the interaction between \$100A9 and RAGE V domain using CHAPS molecule: A novel route to drug development against cell proliferation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1558-1569.	2.3	51
23	<i>i</i> GNM 2.0: the Gaussian network model database for biomolecular structural dynamics. Nucleic Acids Research, 2016, 44, D415-D422.	14.5	71
24	Molecular Binding Sites Are Located Near the Interface of Intrinsic Dynamics Domains (IDDs). Journal of Chemical Information and Modeling, 2014, 54, 2275-2285.	5.4	23
25	Structural insights into the interaction of human S100B and basic fibroblast growth factor (FGF2): Effects on FGFR1 receptor signaling. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2606-2619.	2.3	21
26	The N-terminal substrate-recognition domain of a LonC protease exhibits structural and functional similarity to cytosolic chaperones. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1789-1797.	2.5	6
27	Virtual substrates screening model of triacylglycerol lipase from Bacillus thermocatenulanatus. Wuhan University Journal of Natural Sciences, 2011, 16, 106-112.	0.4	1
28	Discriminating acidic and alkaline enzymes using a random forest model with secondary structure amino acid composition. Process Biochemistry, 2009, 44, 654-660.	3.7	25
29	Predicting Lipase Types by Improved Chous Pseudo-Amino Acid Composition. Protein and Peptide Letters, 2008, 15, 1132-1137.	0.9	98