Antonio Cuadrado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4045088/publications.pdf

Version: 2024-02-01

114 papers 15,432 citations

64 h-index 21540 114 g-index

116 all docs

116 docs citations

116 times ranked 19407 citing authors

#	Article	IF	CITATIONS
1	Brain-Protective Mechanisms of Transcription Factor NRF2: Toward a Common Strategy for Neurodegenerative Diseases. Annual Review of Pharmacology and Toxicology, 2022, 62, 255-277.	9.4	33
2	Novel Series of Dual NRF2 Inducers and Selective MAO-B Inhibitors for the Treatment of Parkinson's Disease. Antioxidants, 2022, 11, 247.	5.1	4
3	Transcription Factor NRF2 Participates in Cell Cycle Progression at the Level of G1/S and Mitotic Checkpoints. Antioxidants, 2022, 11 , 946 .	5.1	7
4	Protective actions of nuclear factor erythroid 2-related factor 2 (NRF2) and downstream pathways against environmental stressors. Free Radical Biology and Medicine, 2022, 187, 72-91.	2.9	28
5	An inhibitor of interaction between the transcription factor NRF2 and the E3 ubiquitin ligase adapter \hat{I}^2 -TrCP delivers anti-inflammatory responses in mouse liver. Redox Biology, 2022, 55, 102396.	9.0	8
6	î±-Synuclein Induces the GSK-3-Mediated Phosphorylation and Degradation of NURR1 and Loss of Dopaminergic Hallmarks. Molecular Neurobiology, 2021, 58, 6697-6711.	4.0	8
7	Melatonin-sulforaphane hybrid ITH12674 attenuates glial response in vivo by blocking LPS binding to MD2 and receptor oligomerization. Pharmacological Research, 2020, 152, 104597.	7.1	13
8	Transcription factor NRF2 uses the Hippo pathway effector TAZ to induce tumorigenesis in glioblastomas. Redox Biology, 2020, 30, 101425.	9.0	26
9	TAZ Represses the Neuronal Commitment of Neural Stem Cells. Cells, 2020, 9, 2230.	4.1	9
10	Inflammation in Parkinson's Disease: Mechanisms and Therapeutic Implications. Cells, 2020, 9, 1687.	4.1	334
11	Can Activation of NRF2 Be a Strategy against COVID-19?. Trends in Pharmacological Sciences, 2020, 41, 598-610.	8.7	161
12	Perspectives on the Clinical Development of NRF2-Targeting Drugs. Handbook of Experimental Pharmacology, 2020, 264, 93-141.	1.8	14
13	WIP Modulates Oxidative Stress through NRF2/KEAP1 in Glioblastoma Cells. Antioxidants, 2020, 9, 773.	5.1	4
14	On the Clinical Pharmacology of Reactive Oxygen Species. Pharmacological Reviews, 2020, 72, 801-828.	16.0	70
15	NRF2 and Primary Cilia: An Emerging Partnership. Antioxidants, 2020, 9, 475.	5.1	8
16	Nordihydroguaiaretic Acid: From Herbal Medicine to Clinical Development for Cancer and Chronic Diseases. Frontiers in Pharmacology, 2020, 11, 151.	3.5	55
17	Tuning melatonin receptor subtype selectivity in oxadiazolone-based analogues: Discovery of QR2 ligands and NRF2 activators with neurogenic properties. European Journal of Medicinal Chemistry, 2020, 190, 112090.	5.5	15
18	Activators and Inhibitors of NRF2: A Review of Their Potential for Clinical Development. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-20.	4.0	390

#	Article	IF	Citations
19	Reactive Oxygen Comes of Age: Mechanism-Based Therapy of Diabetic End-Organ Damage. Trends in Endocrinology and Metabolism, 2019, 30, 312-327.	7.1	50
20	Emerging Therapeutic Targets in Oncologic Photodynamic Therapy. Current Pharmaceutical Design, 2019, 24, 5268-5295.	1.9	15
21	Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nature Reviews Drug Discovery, 2019, 18, 295-317.	46.4	849
22	Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacological Reviews, 2018, 70, 348-383.	16.0	441
23	Oxidative Stress and Inflammation Induced by Environmental and Psychological Stressors: A Biomarker Perspective. Antioxidants and Redox Signaling, 2018, 28, 852-872.	5.4	62
24	Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy. Redox Biology, 2018, 14, 522-534.	9.0	125
25	A role for APP in Wnt signalling links synapse loss with \hat{I}^2 -amyloid production. Translational Psychiatry, 2018, 8, 179.	4.8	74
26	Transcription factor NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of LAMP2A. Autophagy, 2018, 14, 1310-1322.	9.1	134
27	Deficiency in the transcription factor NRF2 worsens inflammatory parameters in a mouse model with combined tauopathy and amyloidopathy. Redox Biology, 2018, 18, 173-180.	9.0	84
28	Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases. Redox Biology, 2017, 11, 543-553.	9.0	147
29	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	9.0	242
30	Discovery of the first dual GSK3β inhibitor/Nrf2 inducer. A new multitarget therapeutic strategy for Alzheimer's disease. Scientific Reports, 2017, 7, 45701.	3.3	59
31	NRF2 deficiency replicates transcriptomic changes in Alzheimer's patients and worsens APP and TAU pathology. Redox Biology, 2017, 13, 444-451.	9.0	161
32	Transcription factor NRF2 controls the fate of neural stem cells in the subgranular zone of the hippocampus. Redox Biology, 2017, 13, 393-401.	9.0	69
33	Response to I. Batinic-Haberle et al Antioxidants and Redox Signaling, 2016, 24, 525-526.	5.4	0
34	Repurposing the NRF2 Activator Dimethyl Fumarate as Therapy Against Synucleinopathy in Parkinson's Disease. Antioxidants and Redox Signaling, 2016, 25, 61-77.	5.4	209
35	NRF2 in neurodegenerative diseases. Current Opinion in Toxicology, 2016, 1, 46-53.	5.0	19
36	Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy, 2016, 12, 1902-1916.	9.1	300

3

#	Article	IF	CITATIONS
37	Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice. Molecular Neurobiology, 2016, 53, 3030-3045.	4.0	82
38	Resveratrol treatment restores peripheral insulin sensitivity in diabetic mice in a sirt1â€independent manner. Molecular Nutrition and Food Research, 2015, 59, 1431-1442.	3.3	53
39	WNT-3A Regulates an Axin1/NRF2 Complex That Regulates Antioxidant Metabolism in Hepatocytes. Antioxidants and Redox Signaling, 2015, 22, 555-571.	5.4	50
40	Antioxidants in Translational Medicine. Antioxidants and Redox Signaling, 2015, 23, 1130-1143.	5.4	201
41	Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase $3\hat{l}^2$ -TrCP. Free Radical Biology and Medicine, 2015, 88, 147-157.	2.9	196
42	Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radical Biology and Medicine, 2015, 84, 263-278.	2.9	50
43	Clinical Relevance of Biomarkers of Oxidative Stress. Antioxidants and Redox Signaling, 2015, 23, 1144-1170.	5.4	604
44	Pharmacology and Clinical Drug Candidates in Redox Medicine. Antioxidants and Redox Signaling, 2015, 23, 1113-1129.	5.4	75
45	Melatonin–sulforaphane hybrid <scp>ITH</scp> 12674 induces neuroprotection in oxidative stress conditions by a â€~drug–prodrug' mechanism of action. British Journal of Pharmacology, 2015, 172, 1807-1821.	5.4	36
46	Reactive Oxygen-Related Diseases: Therapeutic Targets and Emerging Clinical Indications. Antioxidants and Redox Signaling, 2015, 23, 1171-1185.	5.4	120
47	Activation of autophagy in macrophages by pro-resolving lipid mediators. Autophagy, 2015, 11, 1729-1744.	9.1	65
48	Redox control of protein degradation. Redox Biology, 2015, 6, 409-420.	9.0	138
49	Agmatine Induces Nrf2 and Protects Against Corticosterone Effects in Hippocampal Neuronal Cell Line. Molecular Neurobiology, 2015, 51, 1504-1519.	4.0	52
50	Nrf2 protects the lung against inflammation induced by titanium dioxide nanoparticles: A positive regulator role of Nrf2 on cytokine release. Environmental Toxicology, 2015, 30, 782-792.	4.0	28
51	Effects of Nrf2 Deficiency on Bone Microarchitecture in an Experimental Model of Osteoporosis. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-9.	4.0	83
52	The PTEN/NRF2 Axis Promotes Human Carcinogenesis. Antioxidants and Redox Signaling, 2014, 21, 2498-2514.	5.4	104
53	Fractalkine activates NRF2/NFE2L2 and heme oxygenase 1 to restrain tauopathy-induced microgliosis. Brain, 2014, 137, 78-91.	7.6	112
54	Redox Control of Microglial Function: Molecular Mechanisms and Functional Significance. Antioxidants and Redox Signaling, 2014, 21, 1766-1801.	5.4	261

#	Article	IF	Citations
55	Transcription Factors NRF2 and NF-κB Are Coordinated Effectors of the Rho Family, GTP-binding Protein RAC1 during Inflammation. Journal of Biological Chemistry, 2014, 289, 15244-15258.	3.4	262
56	Neuroprotective effect of melatonin against ischemia is partially mediated by alphaâ€7 nicotinic receptor modulation and <scp>HO</scp> â€1 overexpression. Journal of Pineal Research, 2014, 56, 204-212.	7.4	93
57	Protein tyrosine phosphatase 1B modulates GSK3 \hat{l}^2 /Nrf2 and IGFIR signaling pathways in acetaminophen-induced hepatotoxicity. Cell Death and Disease, 2013, 4, e626-e626.	6.3	7 5
58	Nrf2 participates in depressive disorders through an anti-inflammatory mechanism. Psychoneuroendocrinology, 2013, 38, 2010-2022.	2.7	108
59	Nuclear Import and Export Signals Control the Subcellular Localization of Nurr1 Protein in Response to Oxidative Stress*. Journal of Biological Chemistry, 2013, 288, 5506-5517.	3.4	57
60	Nrf2 is controlled by two distinct \hat{l}^2 -TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene, 2013, 32, 3765-3781.	5.9	500
61	\hat{l}_{\pm} -Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson's disease. Human Molecular Genetics, 2012, 21, 3173-3192.	2.9	228
62	Structural and Functional Characterization of Nrf2 Degradation by the Glycogen Synthase Kinase $3\hat{l}^2$ -TrCP Axis. Molecular and Cellular Biology, 2012, 32, 3486-3499.	2.3	338
63	Signaling pathways activated by the phytochemical nordihydroguaiaretic acid contribute to a Keap1-independent regulation of Nrf2 stability: Role of glycogen synthase kinase-3. Free Radical Biology and Medicine, 2012, 52, 473-487.	2.9	177
64	Prolonged oral cannabinoid administration prevents neuroinflammation, lowers \hat{l}^2 -amyloid levels and improves cognitive performance in Tg APP 2576 mice. Journal of Neuroinflammation, 2012, 9, 8.	7.2	196
65	SCF \hat{I}^2 -TrCP Promotes Glycogen Synthase Kinase 3-Dependent Degradation of the Nrf2 Transcription Factor in a Keap1-Independent Manner. Molecular and Cellular Biology, 2011, 31, 1121-1133.	2.3	647
66	Nrf2 deficiency potentiates methamphetamineâ€induced dopaminergic axonal damage and gliosis in the striatum. Glia, 2011, 59, 1850-1863.	4.9	79
67	Deficiency of Nrf2 Accelerates the Effector Phase of Arthritis and Aggravates Joint Disease. Antioxidants and Redox Signaling, 2011, 15, 889-901.	5.4	93
68	Pharmacological Targeting of the Transcription Factor Nrf2 at the Basal Ganglia Provides Disease Modifying Therapy for Experimental Parkinsonism. Antioxidants and Redox Signaling, 2011, 14, 2347-2360.	5.4	271
69	Cannabidiol and Other Cannabinoids Reduce Microglial Activation In Vitro and In Vivo: Relevance to Alzheimer's Disease. Molecular Pharmacology, 2011, 79, 964-973.	2.3	305
70	Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: Modulation by the Nrf2/Trx axis. Free Radical Biology and Medicine, 2010, 48, 1370-1381.	2.9	120
71	The purinergic P2Y13 receptor activates the Nrf2/HO-1 axis and protects against oxidative stress-induced neuronal death. Free Radical Biology and Medicine, 2010, 49, 416-426.	2.9	68
72	Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson's disease. Glia, 2010, 58, 588-598.	4.9	301

#	Article	IF	CITATIONS
73	Different Susceptibility to the Parkinson's Toxin MPTP in Mice Lacking the Redox Master Regulator Nrf2 or Its Target Gene Heme Oxygenase-1. PLoS ONE, 2010, 5, e11838.	2.5	118
74	Targeting Heme Oxygenase-1 for Neuroprotection and Neuroinflammation in Neurodegenerative Diseases. Current Drug Targets, 2010, 11, 1517-1531.	2.1	192
75	Haeme oxygenase-1 overexpression via nAChRs and the transcription factor Nrf2 has antinociceptive effects in the formalin test. Pain, 2009, 146, 75-83.	4.2	21
76	Heme oxygenase-1 induction modulates microsomal prostaglandin E synthase-1 expression and prostaglandin E2 production in osteoarthritic chondrocytes. Biochemical Pharmacology, 2009, 77, 1806-1813.	4.4	39
77	The muscarinic M1 receptor activates Nrf2 through a signaling cascade that involves protein kinase C and inhibition of GSKâ€3beta: connecting neurotransmission with neuroprotection. Journal of Neurochemistry, 2009, 110, 1107-1119.	3.9	55
78	The transcription factor Nrf2 as a new therapeutic target in Parkinson's disease. Expert Opinion on Therapeutic Targets, 2009, 13, 319-329.	3.4	119
79	Role of microglial redox balance in modulation of neuroinflammation. Current Opinion in Neurology, 2009, 22, 308-314.	3.6	100
80	GSKâ€3β downâ€regulates the transcription factor Nrf2 after oxidant damage: relevance to exposure of neuronal cells to oxidative stress. Journal of Neurochemistry, 2008, 105, 192-202.	3.9	208
81	Functional interference between glycogen synthase kinase-3 beta and the transcription factor Nrf2 in protection against kainate-induced hippocampal celldeath. Molecular and Cellular Neurosciences, 2008, 39, 125-132.	2.2	112
82	Nordihydroguaiaretic acid activates the antioxidant pathway Nrf2/HO-1 and protects cerebellar granule neurons against oxidative stress. Neuroscience Letters, 2008, 447, 167-171.	2.1	56
83	Nrf2-mediated haeme oxygenase-1 up-regulation induced by cobalt protoporphyrin has antinociceptive effects against inflammatory pain in the formalin test in mice. Pain, 2008, 137, 332-339.	4.2	52
84	The Transcription Factor Nrf2 Is a Therapeutic Target against Brain Inflammation. Journal of Immunology, 2008, 181, 680-689.	0.8	424
85	Heme Oxygenase-1 as a Therapeutic Target in Neurodegenerative Diseases and Brain Infections. Current Pharmaceutical Design, 2008, 14, 429-442.	1.9	152
86	Xanthine oxidase-derived extracellular superoxide anions stimulate activator protein 1 activity and hypertrophy in human vascular smooth muscle via c-Jun N-terminal kinase and p38 mitogen-activated protein kinases. Journal of Hypertension, 2007, 25, 609-618.	0.5	25
87	Chronic inhalation of rotenone or paraquat does not induce Parkinson's disease symptoms in mice or rats. Experimental Neurology, 2007, 208, 120-126.	4.1	71
88	Nicotinic receptor activation by epibatidine induces heme oxygenase-1 and protects chromaffin cells against oxidative stress. Journal of Neurochemistry, 2007, 102, 1842-1852.	3.9	57
89	Persistent penetration of MPTP through the nasal route induces Parkinson's disease in mice. European Journal of Neuroscience, 2006, 24, 1874-1884.	2.6	49
90	Regulation of heme oxygenase-1 gene expression through the phosphatidylinositol 3-kinase/PKC-ζ pathway and Sp1. Free Radical Biology and Medicine, 2006, 41, 247-261.	2.9	51

#	Article	IF	CITATIONS
91	Glycogen Synthase Kinase- $3\hat{l}^2$ Inhibits the Xenobiotic and Antioxidant Cell Response by Direct Phosphorylation and Nuclear Exclusion of the Transcription Factor Nrf2. Journal of Biological Chemistry, 2006, 281, 14841-14851.	3.4	441
92	Inhibition of Heme Oxygenase-1 Interferes with the Transforming Activity of the Kaposi Sarcoma Herpesvirusencoded G Protein-coupled Receptor. Journal of Biological Chemistry, 2006, 281, 11332-11346.	3.4	70
93	Interleukin- $1\hat{l}^2$ Enhances GABAA Receptor Cell-surface Expression by a Phosphatidylinositol 3-Kinase/Akt Pathway. Journal of Biological Chemistry, 2006, 281, 14632-14643.	3.4	111
94	Signaling through the Leukocyte Integrin LFA-1 in T Cells Induces a Transient Activation of Rac-1 That Is Regulated by Vav and PI3K/Akt-1. Journal of Biological Chemistry, 2004, 279, 16194-16205.	3.4	58
95	Regulation of Cu/Zn-Superoxide Dismutase Expression via the Phosphatidylinositol 3 Kinase/Akt Pathway and Nuclear Factor-κB. Journal of Neuroscience, 2004, 24, 7324-7334.	3.6	194
96	Regulation of Heme Oxygenase-1 Expression through the Phosphatidylinositol 3-Kinase/Akt Pathway and the Nrf2 Transcription Factor in Response to the Antioxidant Phytochemical Carnosol. Journal of Biological Chemistry, 2004, 279, 8919-8929.	3.4	642
97	Protein kinase Akt/PKB phosphorylates heme oxygenaseâ€1 in vitro and in vivo. FEBS Letters, 2004, 578, 90-94.	2.8	97
98	Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood, 2004, 104, 619-625.	1.4	158
99	Nerve Growth Factor Protects against 6-Hydroxydopamine-induced Oxidative Stress by Increasing Expression of Heme Oxygenase-1 in a Phosphatidylinositol 3-Kinase-dependent Manner. Journal of Biological Chemistry, 2003, 278, 13898-13904.	3.4	238
100	Ceramide and Reactive Oxygen Species Generated by H2O2 Induce Caspase-3-independent Degradation of Akt/Protein Kinase B. Journal of Biological Chemistry, 2002, 277, 42943-42952.	3.4	160
101	Insulin restores differentiation of Ras-transformed C2C12 myoblasts by inducing NF-κB through an AKT/P70S6K/p38-MAPK pathway. Oncogene, 2002, 21, 3739-3753.	5.9	60
102	Akt1/PKBÎ \pm Protects PC12 Cells against the Parkinsonism-Inducing Neurotoxin 1-Methyl-4-phenylpyridinium and Reduces the Levels of Oxygen-Free Radicals. Molecular and Cellular Neurosciences, 2001, 17, 67-77.	2.2	54
103	Effect of the Alzheimer amyloid fragment Aβ(25–35) on Akt/PKB kinase and survival of PC12 cells. Journal of Neurochemistry, 2001, 78, 1000-1008.	3.9	142
104	Inhibition of PKB/Akt1 by C2-Ceramide Involves Activation of Ceramide-Activated Protein Phosphatase in PC12 Cells. Molecular and Cellular Neurosciences, 2000, 15, 156-169.	2.2	183
105	Activation of Akt/Protein Kinase B by G Protein-coupled Receptors. Journal of Biological Chemistry, 1998, 273, 19080-19085.	3.4	303
106	Uneven distribution of protein kinase C-? and -? isozymes in human sarcomas and carcinomas. Journal of Cellular Physiology, 1994, 159, 434-440.	4.1	5
107	Acylphosphatase synergizes with progesterone during maturation of Xenopus laevisoocytes. FEBS Letters, 1993, 327, 265-270.	2.8	6
108	The probability of G1 cells to enter into S increases with their size while S length decreases with cell enlargement in Allium cepa. Experimental Cell Research, 1990, 191, 163-170.	2.6	9

#	Article	lF	CITATIONS
109	Expression of protein kinase C I in NIH 3T3 cells increases its growth response to specific activators. FEBS Letters, 1990, 260, 281-284.	2.8	16
110	Increased tyrosine phosphorylation in rat transformed fibroblasts occurs prior to manifestation of the transformed phenotype. Biochemical and Biophysical Research Communications, 1990, 170, 526-532.	2.1	4
111	Cell size of proliferating plant cells increases with temperature: Implications in the control of cell division. Experimental Cell Research, 1989, 185, 277-282.	2.6	11
112	Influence of cell size on differentiation of root meristem cells. Environmental and Experimental Botany, 1987, 27, 273-277.	4.2	5
113	Partial elimination of G1 and G2 periods in higher plant cells by increasing the S period. Experimental Cell Research, 1983, 148, 273-280.	2.6	25
114	Oxidative Stress and Inflammation Induced by Environmental and Psychological Stressors: A Biomarker Perspective. SSRN Electronic Journal, 0, , .	0.4	0