Melody S Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4043877/publications.pdf Version: 2024-02-01

	19657	24258
15,273	61	110
citations	h-index	g-index
0.50	050	1 4 9 9 9
252	252	14033
docs citations	times ranked	citing authors
	15,273 citations 252 docs citations	15,273 61 citations h-index 252 docs citations 252 times ranked

0

#	Article	IF	CITATIONS
1	Molecular Responses to Thermal and Osmotic Stress in Arctic Intertidal Mussels (Mytilus edulis): The Limits of Resilience. Genes, 2022, 13, 155.	2.4	14
2	Life in the freezer: protein metabolism in Antarctic fish. Royal Society Open Science, 2022, 9, 211272.	2.4	5
3	Antimicrobial resistance in Antarctica: is it still a pristine environment?. Microbiome, 2022, 10, 71.	11.1	25
4	Shell thickness of Nucella lapillus in the North Sea increased over the last 130 years despite ocean acidification. Communications Earth & Environment, 2022, 3, .	6.8	6
5	Transcriptional frontloading contributes to crossâ€ŧolerance between stressors. Evolutionary Applications, 2021, 14, 577-587.	3.1	10
6	A century of coping with environmental and ecological changes via compensatory biomineralization in mussels. Global Change Biology, 2021, 27, 624-639.	9.5	13
7	1 °C warming increases spatial competition frequency and complexity in Antarctic marine macrofauna. Communications Biology, 2021, 4, 208.	4.4	5
8	Can Antarctica's shallow zoobenthos †bounce back' from iceberg scouring impacts driven by climate change?. Global Change Biology, 2021, 27, 3157-3165.	9.5	13
9	Resilience in Greenland intertidal Mytilus: The hidden stress defense. Science of the Total Environment, 2021, 767, 144366.	8.0	25
10	Latitudinal patterns in intertidal ecosystem structure in West Greenland suggest resilience to climate change. Ecography, 2021, 44, 1156-1168.	4.5	13
11	A Bivalve Biomineralization Toolbox. Molecular Biology and Evolution, 2021, 38, 4043-4055.	8.9	27
12	Transcriptomic analysis of shell repair and biomineralization in the blue mussel, Mytilus edulis. BMC Genomics, 2021, 22, 437.	2.8	14
13	Sweepstake reproductive success and collective dispersal produce chaotic genetic patchiness in a broadcast spawner. Science Advances, 2021, 7, eabj4713.	10.3	21
14	Large within, and between, species differences in marine cellular responses: Unpredictability in a changing environment. Science of the Total Environment, 2021, 794, 148594.	8.0	10
15	Variable heat shock response in Antarctic biofouling serpulid worms. Cell Stress and Chaperones, 2021, 26, 945-954.	2.9	1
16	Computationally predicted gene regulatory networks in molluscan biomineralization identify extracellular matrix production and ion transportation pathways. Bioinformatics, 2020, 36, 1326-1332.	4.1	21
17	Life in the extreme environments of our planet under pressure. , 2020, , 151-183.		0

18 The ecophysiology of responding to change in polar marine benthos. , 2020, , 184-217.

2

#	Article	IF	CITATIONS
19	A Marine Biodiversity Observation Network for Genetic Monitoring of Hard-Bottom Communities (ARMS-MBON). Frontiers in Marine Science, 2020, 7, .	2.5	34
20	Deciphering mollusc shell production: the roles of genetic mechanisms through to ecology, aquaculture and biomimetics. Biological Reviews, 2020, 95, 1812-1837.	10.4	63
21	Lipid storage patterns in marine copepods: environmental, ecological, and intrinsic drivers. ICES Journal of Marine Science, 2020, 77, 1589-1601.	2.5	9
22	Molecular mechanisms of biomineralization in marine invertebrates. Journal of Experimental Biology, 2020, 223, .	1.7	61
23	Legacy and Emerging Persistent Organic Pollutants in Antarctic Benthic Invertebrates near Rothera Point, Western Antarctic Peninsula. Environmental Science & Technology, 2020, 54, 2763-2771.	10.0	21
24	Gene network analyses support subfunctionalization hypothesis for duplicated hsp70 genes in the Antarctic clam. Cell Stress and Chaperones, 2020, 25, 1111-1116.	2.9	9
25	Moderate reductions in dissolved oxygen may compromise performance in an ecologically-important estuarine invertebrate. Science of the Total Environment, 2019, 693, 133444.	8.0	11
26	Quantifying susceptibility of marine invertebrate biocomposites to dissolution in reduced pH. Royal Society Open Science, 2019, 6, 190252.	2.4	12
27	Spatial and temporal dynamics of Antarctic shallow soft-bottom benthic communities: ecological drivers under climate change. BMC Ecology, 2019, 19, 27.	3.0	23
28	Expression of calcificationâ€related ion transporters during blue mussel larval development. Ecology and Evolution, 2019, 9, 7157-7172.	1.9	37
29	Lack of long-term acclimation in Antarctic encrusting species suggests vulnerability to warming. Nature Communications, 2019, 10, 3383.	12.8	21
30	Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change. Global Change Biology, 2019, 25, 4179-4193.	9.5	52
31	Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris. Scientific Reports, 2019, 9, 952.	3.3	25
32	Antarctica: The final frontier for marine biological invasions. Global Change Biology, 2019, 25, 2221-2241.	9.5	87
33	Variability and change in the west Antarctic Peninsula marine system: Research priorities and opportunities. Progress in Oceanography, 2019, 173, 208-237.	3.2	102
34	Thicker Shells Compensate Extensive Dissolution in Brachiopods under Future Ocean Acidification. Environmental Science & Technology, 2019, 53, 5016-5026.	10.0	28
35	Antarctic environmental change and biological responses. Science Advances, 2019, 5, eaaz0888.	10.3	215
36	Adaptation of Proteins to the Cold in Antarctic Fish: A Role for Methionine?. Genome Biology and Evolution, 2019, 11, 220-231.	2.5	25

#	Article	IF	CITATIONS
37	Life in the intertidal: Cellular responses, methylation and epigenetics. Functional Ecology, 2018, 32, 1982-1994.	3.6	79
38	The reproductive ecology of the Antarctic bivalve Aequiyoldia eightsii (Protobranchia: Sareptidae) follows neither Antarctic nor taxonomic patterns. Polar Biology, 2018, 41, 1693-1706.	1.2	9
39	Blue mussel shell shape plasticity and natural environments: a quantitative approach. Scientific Reports, 2018, 8, 2865.	3.3	60
40	Seasonality of oxygen consumption in five common Antarctic benthic marine invertebrates. Polar Biology, 2018, 41, 897-908.	1.2	8
41	A 120â€year record of resilience to environmental change in brachiopods. Global Change Biology, 2018, 24, 2262-2271.	9.5	46
42	Cellular stress responses to chronic heat shock and shell damage in temperate Mya truncata. Cell Stress and Chaperones, 2018, 23, 1003-1017.	2.9	19
43	Morphological variation in taxonomic characters of the Antarctic starfish Odontaster validus. Polar Biology, 2018, 41, 2159-2165.	1.2	10
44	Antarctic Marine Biodiversity: Adaptations, Environments and Responses to Change. , 2018, , 105-236.		99
45	Biodiversity in marine invertebrate responses to acute warming revealed by a comparative multiâ€omics approach. Global Change Biology, 2017, 23, 318-330.	9.5	80
46	RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. Royal Society Open Science, 2017, 4, 160548.	2.4	75
47	Warming by 1°C Drives Species and Assemblage Level Responses in Antarctica's Marine Shallows. Current Biology, 2017, 27, 2698-2705.e3.	3.9	91
48	Latitudinal trends in shell production cost from the tropics to the poles. Science Advances, 2017, 3, e1701362.	10.3	48
49	Revealing higher than expected meiofaunal diversity in Antarctic sediments: a metabarcoding approach. Scientific Reports, 2017, 7, 6094.	3.3	51
50	Insights from the Shell Proteome: Biomineralization to Adaptation. Molecular Biology and Evolution, 2017, 34, 66-77.	8.9	120
51	Response to van der Meer. Current Biology, 2017, 27, R1303-R1304.	3.9	1
52	Cells to shells: The genomics of mollusc exoskeletons. Marine Genomics, 2016, 27, 1-2.	1.1	1
53	Transcriptomics provides insight into Mytilus galloprovincialis (Mollusca: Bivalvia) mantle function and its role in biomineralisation. Marine Genomics, 2016, 27, 37-45.	1.1	42
54	Very slow embryonic and larval development in the Antarctic limpet Nacella polaris. Polar Biology, 2016, 39, 2273-2280.	1.2	15

#	Article	IF	CITATIONS
55	Shell matrix proteins of the clam, Mya truncata: Roles beyond shell formation through proteomic study. Marine Genomics, 2016, 27, 69-74.	1.1	47
56	Long-term effects of altered pH and temperature on the feeding energetics of the Antarctic sea urchin, <i>Sterechinus neumayeri</i> . Biodiversity, 2016, 17, 34-45.	1.1	51
57	Characterization of the mantle transcriptome in bivalves: Pecten maximus, Mytilus edulis and Crassostrea gigas. Marine Genomics, 2016, 27, 9-15.	1.1	46
58	Latitudinal and depth gradients in marine predation pressure. Global Ecology and Biogeography, 2016, 25, 670-678.	5.8	61
59	The transcriptome of metamorphosing flatfish. BMC Genomics, 2016, 17, 413.	2.8	17
60	An Antarctic molluscan biomineralisation tool-kit. Scientific Reports, 2016, 6, 36978.	3.3	17
61	Characterisation of the mantle transcriptome and biomineralisation genes in the blunt-gaper clam, Mya truncata. Marine Genomics, 2016, 27, 47-55.	1.1	27
62	A Cold Limit to Adaptation in the Sea. Trends in Ecology and Evolution, 2016, 31, 13-26.	8.7	116
63	No ocean acidification effects on shell growth and repair in the New Zealand brachiopod Calloria inconspicua (Sowerby, 1846). ICES Journal of Marine Science, 2016, 73, 920-926.	2.5	44
64	Age-related thermal response: the cellular resilience of juveniles. Cell Stress and Chaperones, 2016, 21, 75-85.	2.9	32
65	Deciphering the molecular adaptation of the king scallop (Pecten maximus) to heat stress using transcriptomics and proteomics. BMC Genomics, 2015, 16, 988.	2.8	41
66	Variability among individuals is generated at the gene expression level. Ecology, 2015, 96, 2004-2014.	3.2	14
67	Acidification effects on biofouling communities: winners and losers. Global Change Biology, 2015, 21, 1907-1913.	9.5	43
68	Transcriptomic response to shell damage in the Antarctic clam, Laternula elliptica: Time scales and spatial localisation. Marine Genomics, 2015, 20, 45-55.	1.1	42
69	Key metabolic pathways involved in xenobiotic biotransformation and stress responses revealed by transcriptomics of the mangrove oyster Crassostrea brasiliana. Aquatic Toxicology, 2015, 166, 10-20.	4.0	53
70	Reconstructing SALMFamide Neuropeptide Precursor Evolution in the Phylum Echinodermata: Ophiuroid and Crinoid Sequence Data Provide New Insights. Frontiers in Endocrinology, 2015, 6, 2.	3.5	28
71	The ocean sampling day consortium. GigaScience, 2015, 4, 27.	6.4	185
72	A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarctic Science, 2015, 27, 3-18.	0.9	158

#	Article	IF	CITATIONS
73	Life Beyond the Ice. , 2015, , 229-252.		7
74	Transcriptome of the Antarctic brooding gastropod mollusc Margarella antarctica. Marine Genomics, 2015, 24, 231-232.	1.1	6
75	Metabolic responses to temperature stress under elevated pCO2 in Crepidula fornicata. Journal of Molluscan Studies, 2015, 81, 238-246.	1.2	13
76	Adult acclimation to combined temperature and p <scp>H</scp> stressors significantly enhances reproductive outcomes compared to shortâ€ŧerm exposures. Journal of Animal Ecology, 2015, 84, 773-784.	2.8	159
77	Ocean acidification does not impact shell growth or repair of the Antarctic brachiopod Liothyrella uva (Broderip, 1833). Journal of Experimental Marine Biology and Ecology, 2015, 462, 29-35.	1.5	60
78	Diversification, Evolution and Sub-Functionalization of 70kDa Heat-Shock Proteins in Two Sister Species of Antarctic Krill: Differences in Thermal Habitats, Responses and Implications under Climate Change. PLoS ONE, 2015, 10, e0121642.	2.5	38
79	Transcriptome of the Atlantic halibut (Hippoglossus hippoglossus). Marine Genomics, 2014, 18, 101-103.	1.1	8
80	Lack of coherence in the warming responses of marine crustaceans. Functional Ecology, 2014, 28, 895-903.	3.6	53
81	The founding charter of the Genomic Observatories Network. GigaScience, 2014, 3, 2.	6.4	51
82	Age-dependent expression of stress and antimicrobial genes in the hemocytes and siphon tissue of the Antarctic bivalve, Laternula elliptica, exposed to injury and starvation. Cell Stress and Chaperones, 2014, 19, 15-32.	2.9	28
83	Low global sensitivity of metabolic rate to temperature in calcified marine invertebrates. Oecologia, 2014, 174, 45-54.	2.0	28
84	Experimental influence of pH on the early life-stages of sea urchins II: increasing parental exposure times gives rise to different responses. Invertebrate Reproduction and Development, 2014, 58, 161-175.	0.8	49
85	Deep sequencing of the mantle transcriptome of the great scallop Pecten maximus. Marine Genomics, 2014, 15, 3-4.	1.1	39
86	Acclimation and thermal tolerance in Antarctic marine ectotherms. Journal of Experimental Biology, 2014, 217, 16-22.	1.7	187
87	The spatial structure of Antarctic biodiversity. Ecological Monographs, 2014, 84, 203-244.	5.4	286
88	Experimental influence of pH on the early life-stages of sea urchins I: different rates of introduction give rise to different responses. Invertebrate Reproduction and Development, 2014, 58, 148-159.	0.8	13
89	Limpet feeding rate and the consistency of physiological response to temperature. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 563-570.	1.5	18
90	Polar research: Six priorities for Antarctic science. Nature, 2014, 512, 23-25.	27.8	189

#	Article	IF	CITATIONS
91	Molecular Analysis of the Cold Tolerant Antarctic Nematode, Panagrolaimus davidi. PLoS ONE, 2014, 9, e104526.	2.5	28
92	Polar marine biology science in Portugal and Spain: Recent advances and future perspectives. Journal of Sea Research, 2013, 83, 9-29.	1.6	15
93	HYDROGEN PEROXIDE AND ECDYSONE IN THE CRYOPROTECTIVE DEHYDRATION STRATEGY OF <i>Megaphorura Arctica</i> (ONYCHIURIDAE: COLLEMBOLA). Archives of Insect Biochemistry and Physiology, 2013, 82, 59-70.	1.5	5
94	Transcriptome pyrosequencing of the Antarctic brittle star Ophionotus victoriae. Marine Genomics, 2013, 9, 9-15.	1.1	18
95	Growth of the Antarctic octocoral Primnoella scotiae and predation by the anemone Dactylanthus antarcticus. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 92, 73-78.	1.4	8
96	Hypoxia impacts large adults first: consequences in a warming world. Global Change Biology, 2013, 19, 2251-2263.	9.5	86
97	Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation. General and Comparative Endocrinology, 2013, 191, 45-58.	1.8	42
98	Identification of molecular and physiological responses to chronic environmental challenge in an invasive species: the <scp>P</scp> acific oyster, <i><scp>C</scp>rassostrea gigas</i> . Ecology and Evolution, 2013, 3, 3283-3297.	1.9	62
99	Ecological Responses of Maritime Antarctic Lakes to Regional Climate Change. Antarctic Research Series, 2013, , 159-170.	0.2	21
100	Hierarchical Population Genetic Structure in a Direct Developing Antarctic Marine Invertebrate. PLoS ONE, 2013, 8, e63954.	2.5	10
101	Juveniles Are More Resistant to Warming than Adults in 4 Species of Antarctic Marine Invertebrates. PLoS ONE, 2013, 8, e66033.	2.5	59
102	Transcriptome and Peptidome Characterisation of the Main Neuropeptides and Peptidic Hormones of a Euphausiid: The Ice Krill, Euphausia crystallorophias. PLoS ONE, 2013, 8, e71609.	2.5	57
103	Slow arm regeneration in the Antarctic brittle star Ophiura crassa (Echinodermata, Ophiuroidea). Aquatic Biology, 2012, 16, 105-113.	1.4	8
104	Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept. Polar Research, 2012, 31, 11091.	1.6	54
105	A horizon scan of global conservation issues for 2012. Trends in Ecology and Evolution, 2012, 27, 12-18.	8.7	64
106	Thermal Reaction Norms and the Scale of Temperature Variation: Latitudinal Vulnerability of Intertidal Nacellid Limpets to Climate Change. PLoS ONE, 2012, 7, e52818.	2.5	29
107	Long-Term Survival of Hydrated Resting Eggs from Brachionus plicatilis. PLoS ONE, 2012, 7, e29365.	2.5	34
108	Iceberg Scour and Shell Damage in the Antarctic Bivalve Laternula elliptica. PLoS ONE, 2012, 7, e46341.	2.5	53

#	Article	IF	CITATIONS
109	Spatial and temporal variation in the heat tolerance limits of two abundant Southern Ocean invertebrates. Marine Ecology - Progress Series, 2012, 450, 81-92.	1.9	35
110	Widespread amplification of amplified fragment length polymorphisms (AFLPs) in marine Antarctic animals. Polar Biology, 2012, 35, 919-929.	1.2	10
111	Physiological plasticity, long term resistance or acclimation to temperature, in the Antarctic bivalve, Laternula elliptica. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 162, 16-21.	1.8	57
112	Marine invertebrate skeleton size varies with latitude, temperature and carbonate saturation: implications for global change and ocean acidification. Global Change Biology, 2012, 18, 3026-3038.	9.5	131
113	Rates of assay success and genotyping error when single nucleotide polymorphism genotyping in nonâ€model organisms: a case study in the Antarctic fur seal. Molecular Ecology Resources, 2012, 12, 861-872.	4.8	23
114	Intrinsic gene expression during regeneration in arm explants of Amphiura filiformis. Journal of Experimental Marine Biology and Ecology, 2012, 413, 106-112.	1.5	17
115	RNA preservation of Antarctic marine invertebrates. Polar Biology, 2012, 35, 633-636.	1.2	6
116	Unexpected Fine-Scale Population Structure in a Broadcast-Spawning Antarctic Marine Mollusc. PLoS ONE, 2012, 7, e32415.	2.5	26
117	Organisms and responses to environmental change. Marine Genomics, 2011, 4, 237-243.	1.1	112
118	Strong Population Genetic Structure in a Broadcast-Spawning Antarctic Marine Invertebrate. Journal of Heredity, 2011, 102, 55-66.	2.4	45
119	Antarctic Krill 454 Pyrosequencing Reveals Chaperone and Stress Transcriptome. PLoS ONE, 2011, 6, e15919.	2.5	73
120	Proteomics of cryoprotective dehydration in Megaphorura arctica Tullberg 1876 (Onychiuridae:) Tj ETQq0 0 0 rg	BT /Overlc 2.0	ock 10 Tf 50 3
121	Duration tenacity: A method for assessing acclimatory capacity of the Antarctic limpet, Nacella concinna. Journal of Experimental Marine Biology and Ecology, 2011, 399, 39-42.	1.5	28
122	Antarctic intertidal limpet ecophysiology: A winter–summer comparison. Journal of Experimental Marine Biology and Ecology, 2011, 403, 39-45.	1.5	25
123	Reproductive ecology of the circumpolar Antarctic nemertean Parborlasia corrugatus: No evidence for inter-annual variation. Journal of Experimental Marine Biology and Ecology, 2011, 404, 98-107.	1.5	14
124	Dynamic gene expression profiles during arm regeneration in the brittle star Amphiura filiformis. Journal of Experimental Marine Biology and Ecology, 2011, 407, 315-322.	1.5	28
125	Skin healing and scale regeneration in fed and unfed sea bream, Sparus auratus. BMC Genomics, 2011, 12, 490.	2.8	58
126	Cold hardening induces transfer of fatty acids between polar and nonpolar lipid pools in the Arctic collembollan <i>Megaphorura arctica</i> . Physiological Entomology, 2011, 36, 135-140.	1.5	15

#	Article	IF	CITATIONS
127	Divergent transcriptomic responses to repeated and single cold exposures in <i>Drosophila melanogaster</i> . Journal of Experimental Biology, 2011, 214, 4021-4029.	1.7	101
128	Turning on the Heat: Ecological Response to Simulated Warming in the Sea. PLoS ONE, 2011, 6, e16050.	2.5	35
129	Upper Temperature Limits of Tropical Marine Ectotherms: Global Warming Implications. PLoS ONE, 2011, 6, e29340.	2.5	176
130	No evidence for genetic differentiation between Antarctic limpet Nacella concinna morphotypes. Marine Biology, 2010, 157, 765-778.	1.5	53
131	Poor acclimation capacities in Antarctic marine ectotherms. Marine Biology, 2010, 157, 2051-2059.	1.5	122
132	Depth gradients in shell morphology correlate with thermal limits for activity and ice disturbance in Antarctic limpets. Journal of Experimental Marine Biology and Ecology, 2010, 390, 1-5.	1.5	22
133	Transcriptional response to heat stress in the Antarctic bivalve Laternula elliptica. Journal of Experimental Marine Biology and Ecology, 2010, 391, 65-72.	1.5	50
134	Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genomics, 2010, 11, 362.	2.8	160
135	Gene expression associated with changes in cold tolerance levels of the Antarctic springtail, <i>Cryptopygus antarcticus</i> . Insect Molecular Biology, 2010, 19, 113-120.	2.0	92
136	Swarms of diversity at the gene cox1 in Antarctic krill. Heredity, 2010, 104, 513-518.	2.6	39
137	Transcription profiling of acute temperature stress in the Antarctic plunderfish Harpagifer antarcticus. Marine Genomics, 2010, 3, 35-44.	1.1	58
138	Gilthead sea bream (Sparus auratus) and European sea bass (Dicentrarchus labrax) expressed sequence tags: Characterization, tissue-specific expression and gene markers. Marine Genomics, 2010, 3, 179-191.	1.1	25
139	Populations and Pathways: Genomic Approaches to Understanding Population Structure and Environmental Adaptation. , 2010, , 73-118.		3
140	Cryoprotective Dehydration: Clues from an Insect. Topics in Current Genetics, 2010, , 147-163.	0.7	4
141	Effects of simulated light regimes on gene expression in Antarctic krill (Euphausia superba Dana). Journal of Experimental Marine Biology and Ecology, 2009, 381, 57-64.	1.5	29
142	Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics, 2009, 10, 108.	2.8	84
143	Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg). BMC Genomics, 2009, 10, 328.	2.8	82
144	Geographical variation in thermal tolerance within Southern Ocean marine ectotherms. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, 154-161.	1.8	60

#	Article	IF	CITATIONS
145	Animal temperature limits and ecological relevance: Effects of size, activity and rates of change. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, S57.	1.8	2
146	Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Cell Stress and Chaperones, 2009, 14, 649-660.	2.9	85
147	Lack of acclimation in Ophionotus victoriae: brittle stars are not fish. Polar Biology, 2009, 32, 399-402.	1.2	84
148	Thermal dependency of burrowing in three species within the bivalve genus Laternula: a latitudinal comparison. Marine Biology, 2009, 156, 1977-1984.	1.5	19
149	Patterns of shell repair in articulate brachiopods indicate size constitutes a refuge from predation. Marine Biology, 2009, 156, 1993-2000.	1.5	47
150	Seasonal variation in the diversity and abundance of pelagic larvae of Antarctic marine invertebrates. Marine Biology, 2009, 156, 2033-2047.	1.5	48
151	Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Functional Ecology, 2009, 23, 248-256.	3.6	311
152	HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: A mini-review. Marine Genomics, 2009, 2, 11-18.	1.1	144
153	Macrophysiology: A Conceptual Reunification. American Naturalist, 2009, 174, 595-612.	2.1	298
154	Early Larval Development of the Sydney Rock Oyster <i>Saccostrea glomerata</i> Under Near-Future Predictions of CO ₂ -Driven Ocean Acidification. Journal of Shellfish Research, 2009, 28, 431-437.	0.9	129
155	Lack of an HSP70 heat shock response in two Antarctic marine invertebrates. Polar Biology, 2008, 31, 1059-1065.	1.2	83
156	How insects survive the cold: molecular mechanisms—a review. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2008, 178, 917-933.	1.5	225
157	Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress and Chaperones, 2008, 13, 39-49.	2.9	112
158	Low heat shock thresholds in wild Antarctic inter-tidal limpets (Nacella concinna). Cell Stress and Chaperones, 2008, 13, 51-58.	2.9	44
159	Cold hardening processes in the Antarctic springtail, Cryptopygus antarcticus: Clues from a microarray. Journal of Insect Physiology, 2008, 54, 1356-1362.	2.0	39
160	Temperature limits to activity, feeding and metabolism in the Antarctic starfish Odontaster validus. Marine Ecology - Progress Series, 2008, 358, 181-189.	1.9	97
161	Characterisation of the warm acclimated protein gene (wap65) in the Antarctic plunderfish (Harpagifer antarcticus). DNA Sequence, 2008, 19, 50-55.	0.7	11
162	Delayed arm regeneration in the Antarctic brittle star Ophionotus victoriae. Aquatic Biology, 2007, 1, 45-53.	1.4	50

#	Article	IF	CITATIONS
163	Climate change and the marine ecosystem of the western Antarctic Peninsula. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 149-166.	4.0	343
164	Climate Change and Invasibility of the Antarctic Benthos. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 129-154.	8.3	248
165	Growth in the slow lane: protein metabolism in the Antarctic limpet <i>Nacella concinna</i> (Strebel) Tj ETQq1 1 (0.784314 1.7	rgBT /Overloo
166	Persistence of duplicated PAC1 receptors in the teleost, Sparus auratus. BMC Evolutionary Biology, 2007, 7, 221.	3.2	21
167	Surviving extreme polar winters by desiccation: clues from Arctic springtail (Onychiurus arcticus) EST libraries. BMC Genomics, 2007, 8, 475.	2.8	61
168	Tolerance of Antarctic soil fungi to hydrocarbons. Science of the Total Environment, 2007, 372, 539-548.	8.0	60
169	Very slow development in two Antarctic bivalve molluscs, the infaunal clam Laternula elliptica and the scallop Adamussium colbecki. Marine Biology, 2007, 150, 1191-1197.	1.5	55
170	Multi-year observations on the gametogenic ecology of the Antarctic seastar Odontaster validus. Marine Biology, 2007, 153, 15-23.	1.5	35
171	The HSP70 heat shock response in the Antarctic fish Harpagifer antarcticus. Polar Biology, 2007, 31, 171-180.	1.2	87
172	Hypoxia tolerance associated with activity reduction is a key adaptation for Laternula elliptica seasonal energetics. Oecologia, 2007, 153, 29-36.	2.0	46
173	Thermal limits of burrowing capacity are linked to oxygen availability and size in the Antarctic clam Laternula elliptica. Oecologia, 2007, 154, 479-484.	2.0	54
174	Novel bioactive parathyroid hormone and related peptides in teleost fish. FEBS Letters, 2006, 580, 291-299.	2.8	49
175	DNA barcoding: A molecular tool to identify Antarctic marine larvae. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1053-1060.	1.4	89
176	Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biological Reviews, 2006, 81, 75.	10.4	278
177	Hyperoxia alleviates thermal stress in the Antarctic bivalve, Laternula elliptica: evidence for oxygen limited thermal tolerance. Polar Biology, 2006, 29, 688-693.	1.2	106
178	The effects of temperature on walking and righting in temperate and Antarctic crustaceans. Polar Biology, 2006, 29, 978-987.	1.2	57
179	Evolution of secretin family GPCR members in the metazoa. BMC Evolutionary Biology, 2006, 6, 108.	3.2	110
180	The effects of temperature on peripheral neuronal function in eurythermal and stenothermal crustaceans. Journal of Experimental Biology, 2006, 209, 1976-1987.	1.7	42

#	Article	IF	CITATIONS
181	Comparative Study of Family 2 GPCRs inFugu rubripes. Annals of the New York Academy of Sciences, 2005, 1040, 257-260.	3.8	3
182	New microsatellite markers in turbot (Scophthalmus maximus) derived from an enriched genomic library and sequence databases. Molecular Ecology Notes, 2005, 5, 62-64.	1.7	15
183	Genomics: applications to Antarctic ecosystems. Polar Biology, 2005, 28, 351-365.	1.2	44
184	Invertebrate muscle performance at high latitude: swimming activity in the Antarctic scallop, Adamussium colbecki. Polar Biology, 2005, 28, 464-469.	1.2	21
185	The secretin G-protein-coupled receptor family: teleost receptors. Journal of Molecular Endocrinology, 2005, 34, 753-765.	2.5	32
186	Protein Synthesis, RNA Concentrations, Nitrogen Excretion, and Metabolism Vary Seasonally in the Antarctic Holothurian Heterocucumis steineni (Ludwig 1898). Physiological and Biochemical Zoology, 2004, 77, 556-569.	1.5	27
187	Metabolic flexibility: the key to long-term evolutionary success in Bryozoa?. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S18-21.	2.6	22
188	Duplicated receptors for VIP and PACAP (VPAC1R and PAC1R) in a teleost fish, Fugu rubripes. Journal of Molecular Endocrinology, 2004, 33, 411-428.	2.5	28
189	Extreme sensitivity of biological function to temperature in Antarctic marine species. Functional Ecology, 2004, 18, 625-630.	3.6	332
190	Amphipod crustacean size spectra: new insights in the relationship between size and oxygen. Oikos, 2004, 106, 167-175.	2.7	101
191	Links between the structure of an Antarctic shallow-water community and ice-scour frequency. Oecologia, 2004, 141, 121-129.	2.0	118
192	Movements and burrowing activity in the Antarctic bivalve molluscs Laternula elliptica and Yoldia eightsi. Polar Biology, 2004, 27, 357-367.	1.2	35
193	Antarctic Genomics. Comparative and Functional Genomics, 2004, 5, 230-238.	2.0	34
194	Characterisation, expression and promoter analysis of an interleukin 10 homologue in the puffer fish, Fugu rubripes. Immunogenetics, 2003, 55, 325-335.	2.4	130
195	Genomics and Mapping of Teleostei (Bony Fish). Comparative and Functional Genomics, 2003, 4, 182-193.	2.0	19
196	Fugu ESTs: New Resources for Transcription Analysis and Genome Annotation. Genome Research, 2003, 13, 2747-2753.	5.5	41
197	Isolation and Characterisation of the Corticotropin Releasing Factor Receptor 1 (CRFR1) Gene in a Teleost Fish,Fugu rubripes. DNA Sequence, 2003, 14, 215-218.	0.7	22
198	Genomic Characterisation of Putative Growth Hormone Releasing Hormone (GHRH) Receptor Genes in the Teleost Fish Fugu rubripes. DNA Sequence, 2003, 14, 129-133.	0.7	10

#	Article	IF	CITATIONS
199	Fugu: a comparative perspective. , 2003, , 1-19.		0
200	Xena, a Full-Length Basal Retroelement from Tetraodontid Fish. Molecular Biology and Evolution, 2002, 19, 247-255.	8.9	29
201	Metabolic Demand, Oxygen Supply, and Critical Temperatures in the Antarctic BivalveLaternula elliptica. Physiological and Biochemical Zoology, 2002, 75, 123-133.	1.5	144
202	Calcitonin: characterisation and expression in a teleost fish, Fugu rubripes. Journal of Molecular Endocrinology, 2002, 28, 111-123.	2.5	31
203	Application of comparative genomics in fish endocrinology. International Review of Cytology, 2002, 221, 149-190.	6.2	10
204	Whole-Genome Shotgun Assembly and Analysis of the Genome of <i>Fugu rubripes</i> . Science, 2002, 297, 1301-1310.	12.6	1,432
205	Extreme Responses to Climate Change in Antarctic Lakes. Science, 2002, 295, 645-645.	12.6	267
206	Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biology, 2002, 25, 31-40.	1.2	193
207	Fugu orthologues of human major histocompatibility complex genes: a genome survey. Immunogenetics, 2002, 54, 367-380.	2.4	42
208	Low-temperature protein metabolism: seasonal changes in protein synthesis and RNA dynamics in the Antarctic limpet <i>Nacella concinna</i> Strebel 1908. Journal of Experimental Biology, 2002, 205, 3077-3086.	1.7	64
209	Low-temperature protein metabolism: seasonal changes in protein synthesis and RNA dynamics in the Antarctic limpet Nacella concinna Strebel 1908. Journal of Experimental Biology, 2002, 205, 3077-86.	1.7	55
210	Feeding, metabolism and growth in the Antarctic limpet, Nacella concinna (Strebel 1908). Marine Biology, 2001, 138, 553-560.	1.5	48
211	Characterization of the MHC class�I region of the Japanese pufferfish (Fugu rubripes). Immunogenetics, 2001, 52, 174-185.	2.4	61
212	Comparative analysis of human 19p12-13 region in Fugu and mouse. Mammalian Genome, 2001, 12, 478-483.	2.2	2
213	Recolonisation of meiofauna after catastrophic iceberg scouring in shallow Antarctic sediments. Polar Biology, 2001, 24, 918-925.	1.2	76
214	Use of the Japanese Pufferfish (Fugu rubripes) in Comparative Genomics. Marine Biotechnology, 2001, 3, S130-S140.	2.4	17
215	Four Resource Centers for Fishes: Specifies, Stocks, and Services. Marine Biotechnology, 2001, 3, S239-S248.	2.4	7
216	Comparative mapping of the human 9q34 region in <i>Fugu rubripes</i> . Cytogenetic and Genome Research, 2001, 94, 173-179.	1.1	8

#	Article	IF	CITATIONS
217	Identification and Characterization of a β Proteasome Subunit Cluster in the Japanese Pufferfish (Fugu) Tj ETQq1	1,0,78431 0.8	4₃ggBT /O∨
218	Genomic structure and expression of parathyroid hormone-related protein gene (PTHrP) in a teleost, Fugu rubripes. Gene, 2000, 250, 67-76.	2.2	53
219	The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves. Geological Society Special Publication, 2000, 177, 441-450.	1.3	78
220	Fugu Rubripes: A Fish Model Genome. , 2000, , 71-96.		3
221	Comparative Genomics: An Introduction: Sequencing Projects and Model Organisms. , 2000, , 1-22.		1
222	Generation and Analysis of 25 Mb of Genomic DNA from the Pufferfish Fugu rubripes by Sequence Scanning. Genome Research, 1999, 9, 960-971.	5.5	81
223	Polar gigantism dictated by oxygen availability. Nature, 1999, 399, 114-115.	27.8	272
224	Human FUSE binding protein 3 gene (FBP3). Map position 9q33-34.1. , 1999, 7, 577-577.		5
225	Human golgin-95 gene (GOLGA2). Map position 9q32-34.1. , 1999, 7, 501-501.		1
226	Comparative genomics: the key to understanding the human genome project. BioEssays, 1999, 21, 121-130.	2.5	41
227	Sequence scanning chicken cosmids: a methodology for genome screening. Gene, 1999, 227, 223-230.	2.2	12
228	Three receptor genes for plasminogen related growth factors in the genome of the puffer fishFugu rubripes1. FEBS Letters, 1999, 443, 370-374.	2.8	15
229	The distribution, abundance and seasonality of pelagic marine invertebrate larvae in the maritime Antarctic. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 471-484.	4.0	84
230	The identification and characterization of microsatellites in the compact genome of the japanese pufferfish, Fugu rubripes: perspectives in functional and comparative genomic analyses. Journal of Molecular Biology, 1998, 278, 843-854.	4.2	80
231	The Pufferfish Gene Map. ILAR Journal, 1998, 39, 249-256.	1.8	3
232	Cytological and molecular characterization of repetitive DNA sequences of <i>Solanum brevidens</i> and <i>Solanum tuberosum</i> . Genome, 1998, 41, 487-494.	2.0	3
233	Growth and metabolism in the Antarctic brachiopod Liothyrella uva. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 851-858.	4.0	103
234	The germinal center kinase gene and a novel CDC25-like gene are located in the vicinity of the PYCM gene on 11q13. Human Genetics, 1997, 100, 611-619.	3.8	28

#	Article	IF	CITATIONS
235	Analyses of solanaceous species using repetitive genomic DNA sequences isolated from Solanum brevidens. Plant Science, 1996, 117, 121-129.	3.6	7
236	Bomb signals in old Antarctic brachiopods. Nature, 1996, 380, 207-208.	27.8	49
237	STRONTIUM LABELLING OF THE SHELL OF THE ANTARCTIC LIMPET NACELLA CONCINNA (STREBEL, 1908). Journal of Molluscan Studies, 1996, 62, 315-325.	1.2	16
238	Repeated DNA and heterochromatin structure in Rumex acetosa. Heredity, 1993, 70, 527-536.	2.6	21
239	Pedal mucus production by the Antarctic limpet Nacella concinna (Strebel, 1908). Journal of Experimental Marine Biology and Ecology, 1993, 174, 177-192.	1.5	25
240	In Situ Hybridization of Plant Meiotic and Mitotic Chromosomes: Differences in Signal Detection. Biotechnic and Histochemistry, 1992, 67, 265-267.	1.3	1
241	Dosage sex-chromosome systems in plants. Plant Science, 1991, 80, 79-92.	3.6	84
242	The physiology of polar marine zooplankton. Polar Research, 1991, 10, 355-370.	1.6	79
243	Two methods for the assessment of the oxygen content of small volumes of seawater. Journal of Experimental Marine Biology and Ecology, 1990, 141, 53-62.	1.5	57
244	Physical mapping of the B-hordein loci on barley chromosome 5 by <i>in situ</i> hybridization. Genome, 1989, 32, 925-929.	2.0	40
245	Temperature and basal metabolism in two Antarctic marine herbivores. Journal of Experimental Marine Biology and Ecology, 1989, 127, 1-12.	1.5	113
246	Evidence for Carbonate System Mediated Shape Shift in an Intertidal Predatory Gastropod. Frontiers in Marine Science, 0, 9, .	2.5	2