
Binith Cheeran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4043739/publications.pdf Version: 2024-02-01

RINITH CHEEDAN

#	Article	IF	CITATIONS
1	Directional Deep Brain Stimulation for Parkinson's Disease: Results of an InternationalÂCrossover Study With Randomized, Double-Blind Primary Endpoint. Neuromodulation, 2022, 25, 817-828.	0.8	34
2	Variability in non-invasive brain stimulation studies: Reasons and results. Neuroscience Letters, 2020, 719, 133330.	2.1	95
3	Solutions for managing variability in non-invasive brain stimulation studies. Neuroscience Letters, 2020, 719, 133332.	2.1	52
4	Mechanisms Underlying Decision-Making as Revealed by Deep-Brain Stimulation in Patients with Parkinson's Disease. Current Biology, 2018, 28, 1169-1178.e6.	3.9	66
5	Alternating Modulation of Subthalamic Nucleus Beta Oscillations during Stepping. Journal of Neuroscience, 2018, 38, 5111-5121.	3.6	66
6	A Preliminary Comparison of Motor Learning Across Different Non-invasive Brain Stimulation Paradigms Shows No Consistent Modulations. Frontiers in Neuroscience, 2018, 12, 253.	2.8	27
7	Subthalamic nucleus beta and gamma activity is modulated depending on the level of imagined grip force. Experimental Neurology, 2017, 293, 53-61.	4.1	31
8	Stimulating at the right time: phase-specific deep brain stimulation. Brain, 2017, 140, 132-145.	7.6	213
9	Long-Term Results of Deep Brain Stimulation of the Anterior Cingulate Cortex for Neuropathic Pain. World Neurosurgery, 2017, 106, 625-637.	1.3	98
10	Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks. ELife, 2017, 6, .	6.0	71
11	Subthalamic nucleus gamma activity increases not only during movement but also during movement inhibition. ELife, 2017, 6, .	6.0	41
12	Parkinson's Disease: New Insights into Pathophysiology and Rehabilitative Approaches. Parkinson's Disease, 2016, 2016, 1-2.	1.1	9
13	Comparing neurostimulation technologies in refractory focal-onset epilepsy. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1174-1182.	1.9	55
14	Adaptive deep brain stimulation for Parkinson's disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1388-1389.	1.9	199
15	Recurrence of dyskinesia as a side-effect of mirabegron in a patient with Parkinson's disease on DBS (GPi). Parkinsonism and Related Disorders, 2016, 27, 107-108.	2.2	11
16	Paradoxical facilitation after depotentiation protocol can precede dyskinesia onset in early Parkinson's disease. Experimental Brain Research, 2016, 234, 3659-3667.	1.5	10
17	Post-Traumatic Tremor and Thalamic Deep Brain Stimulation: Evidence for Use of Diffusion Tensor Imaging. World Neurosurgery, 2016, 96, 607.e7-607.e11.	1.3	6
18	Bilateral adaptive deep brain stimulation is effective in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 717-721.	1.9	269

BINITH CHEERAN

#	Article	IF	CITATIONS
19	Tremor Reduction by Deep Brain Stimulation Is Associated With Gamma Power Suppression in Parkinson's Disease. Neuromodulation, 2015, 18, 349-354.	0.8	60
20	Intra-individual variability in the response to anodal transcranial direct current stimulation. Clinical Neurophysiology, 2015, 126, 2342-2347.	1.5	150
21	Subthalamic Nucleus Local Field Potential Activity Helps Encode Motor Effort Rather Than Force in Parkinsonism. Journal of Neuroscience, 2015, 35, 5941-5949.	3.6	39
22	Relationship Between Non-invasive Brain Stimulation-induced Plasticity and Capacity for Motor Learning. Brain Stimulation, 2015, 8, 1209-1219.	1.6	52
23	The nature of tremor circuits in parkinsonian and essential tremor. Brain, 2014, 137, 3223-3234.	7.6	90
24	Inter-individual Variability in Response to Non-invasive Brain Stimulation Paradigms. Brain Stimulation, 2014, 7, 372-380.	1.6	638
25	The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clinical Neurophysiology, 2014, 125, 1509-1532.	1.5	92
26	Theta Burst Stimulation in the Rehabilitation of the Upper Limb. Neurorehabilitation and Neural Repair, 2012, 26, 976-987.	2.9	120
27	The effect of BDNF val66met polymorphism on visuomotor adaptation. Experimental Brain Research, 2012, 223, 43-50.	1.5	26
28	Human Theta Burst Stimulation Enhances Subsequent Motor Learning and Increases Performance Variability. Cerebral Cortex, 2011, 21, 1627-1638.	2.9	79
29	Ventral premotor to primary motor cortical interactions during noxious and naturalistic action observation. Neuropsychologia, 2010, 48, 1802-1806.	1.6	21
30	TMS activation of interhemispheric pathways between the posterior parietal cortex and the contralateral motor cortex. Journal of Physiology, 2009, 587, 4281-4292.	2.9	62
31	The Future of Restorative Neurosciences in Stroke: Driving the Translational Research Pipeline From Basic Science to Rehabilitation of People After Stroke. Neurorehabilitation and Neural Repair, 2009, 23, 97-107.	2.9	125
32	Altered dorsal premotor–motor interhemispheric pathway activity in focal arm dystonia. Movement Disorders, 2008, 23, 660-668.	3.9	46
33	A common polymorphism in the brainâ€derived neurotrophic factor gene (<i>BDNF</i>) modulates human cortical plasticity and the response to rTMS. Journal of Physiology, 2008, 586, 5717-5725.	2.9	592
34	Functional Interplay between Posterior Parietal and Ipsilateral Motor Cortex Revealed by Twin-Coil Transcranial Magnetic Stimulation during Reach Planning toward Contralateral Space. Journal of Neuroscience, 2008, 28, 5944-5953.	3.6	118
35	Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect. Brain, 2008, 131, 3147-3155.	7.6	201
36	Focal Stimulation of the Posterior Parietal Cortex Increases the Excitability of the Ipsilateral Motor Cortex. Journal of Neuroscience, 2007, 27, 6815-6822.	3.6	202

#	Article	IF	CITATIONS
37	Role of the Cerebellum in Externally Paced Rhythmic Finger Movements. Journal of Neurophysiology, 2007, 98, 145-152.	1.8	151
38	Time Course of Functional Connectivity between Dorsal Premotor and Contralateral Motor Cortex during Movement Selection. Journal of Neuroscience, 2006, 26, 7452-7459.	3.6	202