Kosuke Yusa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4043699/publications.pdf Version: 2024-02-01

KOSIIKE YIISA

#	Article	IF	CITATIONS
1	Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nature Biotechnology, 2014, 32, 267-273.	17.5	943
2	Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature, 2019, 568, 511-516.	27.8	886
3	Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature, 2011, 478, 391-394.	27.8	635
4	A hyperactive <i>piggyBac</i> transposase for mammalian applications. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1531-1536.	7.1	603
5	Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nature Methods, 2009, 6, 363-369.	19.0	575
6	A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia. Cell Reports, 2016, 17, 1193-1205.	6.4	556
7	Butyrate Greatly Enhances Derivation of Human Induced Pluripotent Stem Cells by Promoting Epigenetic Remodeling and the Expression of Pluripotency-Associated Genes. Stem Cells, 2010, 28, 713-720.	3.2	385
8	<i>PiggyBac</i> Transposon Mutagenesis: A Tool for Cancer Gene Discovery in Mice. Science, 2010, 330, 1104-1107.	12.6	217
9	A Genetic Progression Model of BrafV600E-Induced Intestinal Tumorigenesis Reveals Targets for Therapeutic Intervention. Cancer Cell, 2013, 24, 15-29.	16.8	183
10	Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets. Nature Communications, 2019, 10, 5817.	12.8	160
11	Characterization of Sleeping Beauty Transposition and Its Application to Genetic Screening in Mice. Molecular and Cellular Biology, 2003, 23, 9189-9207.	2.3	146
12	Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Research, 2011, 39, e148-e148.	14.5	141
13	Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system. Nature Methods, 2005, 2, 763-769.	19.0	112
14	ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. Nature Genetics, 2020, 52, 187-197.	21.4	108
15	Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent Stem Cells. PLoS Genetics, 2016, 12, e1005932.	3.5	96
16	Hyperactive <i>piggyBac</i> Gene Transfer in Human Cells and <i>In Vivo</i> . Human Gene Therapy, 2012, 23, 311-320.	2.7	94
17	Functional linkage of gene fusions to cancer cell fitness assessed by pharmacological and CRISPR-Cas9 screening. Nature Communications, 2019, 10, 2198.	12.8	92
18	The critical role of histone H2A-deubiquitinase Mysm1 in hematopoiesis and lymphocyte differentiation. Blood, 2012, 119, 1370-1379.	1.4	87

KOSUKE YUSA

#	Article	IF	CITATIONS
19	Nuclear Wave1 Is Required for Reprogramming Transcription in Oocytes and for Normal Development. Science, 2013, 341, 1002-1005.	12.6	82
20	Seamless genome editing in human pluripotent stem cells using custom endonuclease–based gene targeting and the piggyBac transposon. Nature Protocols, 2013, 8, 2061-2078.	12.0	80
21	The <i>piggyBac</i> Transposon Displays Local and Distant Reintegration Preferences and Can Cause Mutations at Noncanonical Integration Sites. Molecular and Cellular Biology, 2013, 33, 1317-1330.	2.3	77
22	Genome-wide phenotype analysis in ES cells by regulated disruption of Bloom's syndrome gene. Nature, 2004, 429, 896-899.	27.8	76
23	Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting. BMC Genomics, 2018, 19, 604.	2.8	75
24	Enhancement of Sleeping Beauty Transposition by CpG Methylation: Possible Role of Heterochromatin Formation. Molecular and Cellular Biology, 2004, 24, 4004-4018.	2.3	74
25	Interhomolog recombination and loss of heterozygosity in wild-type and Bloom syndrome helicase (BLM)-deficient mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11971-11976.	7.1	72
26	Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions. Nature Communications, 2020, 11, 1528.	12.8	67
27	JACKS: joint analysis of CRISPR/Cas9 knockout screens. Genome Research, 2019, 29, 464-471.	5.5	64
28	Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia. Blood, 2017, 130, 1911-1922.	1.4	63
29	SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4. Nature Communications, 2018, 9, 5378.	12.8	60
30	A CRISPR knockout screen identifies SETDB1-target retroelement silencing factors in embryonic stem cells. Genome Research, 2018, 28, 846-858.	5.5	54
31	Sleeping Beauty Transposon-Based Phenotypic Analysis of Mice: Lack of Arpc3 Results in Defective Trophoblast Outgrowth. Molecular and Cellular Biology, 2006, 26, 6185-6196.	2.3	49
32	Genome-wide CRISPR-Cas9 screening in mammalian cells. Methods, 2019, 164-165, 29-35.	3.8	49
33	Sleeping Beauty Transposase Has an Affinity for Heterochromatin Conformation. Molecular and Cellular Biology, 2007, 27, 1665-1676.	2.3	46
34	Pooled extracellular receptor-ligand interaction screening using CRISPR activation. Genome Biology, 2018, 19, 205.	8.8	44
35	Minimal genome-wide human CRISPR-Cas9 library. Genome Biology, 2021, 22, 40.	8.8	40
36	<i>Fezf1</i> is required for penetration of the basal lamina by olfactory axons to promote olfactory development. Journal of Comparative Neurology, 2009, 515, 565-584.	1.6	39

Kosuke Yusa

#	Article	IF	CITATIONS
37	Optimised metrics for CRISPR-KO screens with second-generation gRNA libraries. Scientific Reports, 2017, 7, 7384.	3.3	37
38	A homozygous mutant embryonic stem cell bank applicable for phenotype-driven genetic screening. Nature Methods, 2011, 8, 1071-1077.	19.0	36
39	Genome-scale identification of cellular pathways required for cell surface recognition. Genome Research, 2018, 28, 1372-1382.	5.5	29
40	KAT7 is a genetic vulnerability of acute myeloid leukemias driven by MLL rearrangements. Leukemia, 2021, 35, 1012-1022.	7.2	26
41	Genome-Wide Forward Genetic Screens in Mouse ES Cells. Methods in Enzymology, 2010, 477, 217-242.	1.0	22
42	Applications of CRISPR genome editing technology in drug target identification and validation. Expert Opinion on Drug Discovery, 2017, 12, 541-552.	5.0	15
43	Removal of Reprogramming Transgenes Improves the Tissue Reconstitution Potential of Keratinocytes Generated From Human Induced Pluripotent Stem Cells. Stem Cells Translational Medicine, 2014, 3, 992-1001.	3.3	14
44	Enhancement of microhomology-mediated genomic rearrangements by transient loss of mouse Bloom syndrome helicase. Genome Research, 2013, 23, 1462-1473.	5.5	13
45	CRISPR-Knockout Screen Identifies Dmap1 as a Regulator of Chemically Induced Reprogramming and Differentiation of Cardiac Progenitors. Stem Cells, 2019, 37, 958-972.	3.2	11
46	Selective targeting of multiple myeloma cells with a monoclonal antibody recognizing the ubiquitous protein CD98 heavy chain. Science Translational Medicine, 2022, 14, eaax7706.	12.4	10
47	Genetic Vulnerabilities of DNMT3AR882H in Myeloid Malignancies. Blood, 2019, 134, 111-111.	1.4	8
48	Bloom's syndrome gene-deficient phenotype in mouse primary cells induced by a modified tetracycline-controlled trans-silencer. Gene, 2006, 369, 80-89.	2.2	7
49	Rad54 is dispensable for the ALT pathway. Genes To Cells, 2006, 11, 1305-1315.	1.2	7
50	Genome-wide screening identifies Polycomb repressive complex 1.3 as an essential regulator of human naÃīve pluripotent cell reprogramming. Science Advances, 2022, 8, eabk0013.	10.3	7
51	The <i>CADM1</i> tumor suppressor gene is a major candidate gene in MDS with deletion of the long arm of chromosome 11. Blood Advances, 2022, 6, 386-398.	5.2	3
52	Measurement of the nuclear concentration of α-ketoglutarate during adipocyte differentiation by using a fluorescence resonance energy transfer-based biosensor with nuclear localization signals. Endocrine Journal, 2021, 68, 1429-1438.	1.6	2
53	A Crispr/Cas9 Drop-out Screen Identifies Genome-Wide Genetic Valnerubilities in Acute Myeloid Leukaemia. Blood, 2015, 126, 554-554.	1.4	1
54	SRPK1 Is a Therapeutic Vulnerability in Acute Myeloid Leukemia through Its Effects on Alternative Isoforms of Epigenetic Regulators Including BRD4. Blood, 2017, 130, 781-781.	1.4	0